精英家教网 > 高中数学 > 题目详情
已知双曲线的中心在原点,焦点在x轴上,一条渐进线方程是y=
2
x,那么它的离心率是(  )
A、
2
2
B、
3
3
C、
2
D、
3
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:由题意设出双曲线的方程,得到它的一条渐近线方程y=
b
a
x即y=
2
x,由此可得b=
2
a,结合双曲线的平方关系可得c与a的比值,求出该双曲线的离心率.
解答: 解:∵双曲线的中心在原点,焦点在x轴上,
∴设双曲线的方程为
x2
a2
-
y2
b2
=1,
由此可得双曲线的渐近线方程为y=±
b
a
x,
结合题意一条渐近线方程为y=
2
x,
b
a
=
2
,设a=t,b=
2
t,则c=
a2+b2
=
3
t(t>0)
∴该双曲线的离心率是e=
c
a
=
3

故选D.
点评:本题给出双曲线的一条渐近线方程,求双曲线的离心率,着重考查了双曲线的标准方程、基本概念和简单几何性质等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=x|x-1|-blnx+m,(b,m∈R)
(Ⅰ)当b=3时,判断函数f(x)在[l,+∞)上的单调性;
(Ⅱ)记h(x)=f(x)+blnx,当m>1时,求函数y=h(x)在[0,m]上的最大值;
(Ⅲ)当b=1时,若函数f(x)有零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(x3+2x2+5x+t)e-x,t∈R,x∈R.
(Ⅰ)当t=5时,求函数y=f(x)的单调区间;
(Ⅱ)若存在实数t∈[0,1],使对任意的x∈[-4,m],不等式 f(x)≤x恒成立,
求整数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y,z>0,并且
x2
1+x2
+
y2
1+y2
+
z2
1+z2
=2,求证:
x
1+x2
+
y
1+y2
+
z
1+z2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示,则这个几何体的体积为(  )
A、6.5B、7C、7.5D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的两条渐近线均和圆C:x2+y2-6x+5=0相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为(  )
A、
x2
4
-
y2
5
=1
B、
x2
5
-
y2
4
=1
C、
x2
3
-
y2
6
=1
D、
x2
6
-
y2
3
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

若x,y满足
2x-y-1≥0
x+y-5≥0
y≥1
,则
3x+y-2
x+1
的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2-2x+lnx.
(Ⅰ)若f(x)无极值点,但其导函数f'(x)有零点,求a的值;
(Ⅱ)若f(x)有两个极值点,求a的取值范围,并证明f(x)的极小值小于-
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
夹角为45°,且|
a
|=
2
,|2
a
-3
b
|=2
5
,则|
b
|=
 

查看答案和解析>>

同步练习册答案