精英家教网 > 高中数学 > 题目详情
已知曲线y1=2-
1x
y2=x3-x2+2x在x=x0
处切线的斜率的乘积为3,则x0=
1
1
分析:对函数分别求导,可得y1=
1
x2
y2=3x2-2x+2,由导数的几何意义可知,k1k2=
1
x02
•(3x02-2x0+2)
=3,,解方程可求
解答:解:由题意可得,y1=
1
x2
y2=3x2-2x+2
设曲线y1=2-
1
x
y2=x3-x2+2x在x=x0
处切线的斜率分别为k1,k2
由导数的几何意义可知,k1k2=
1
x02
•(3x02-2x0+2)
=3,
解得x0=1
故答案为:1
点评:本题主要考查了导数的几何意义的应用,属于基本概念、基本方法的简单应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知曲线C:y2=2x(y≥0),A1(x1,y1),A2(x2,y2),…,An(xn,yn),…是曲线C上的点,且满足0<x1<x2<…<xn<…,一列点Bi(ai,0)(i=1,2,…)在x轴上,且△Bi-1AiBi(B0是坐标原点)是以Ai为直角顶点的等腰直角三角形.
(Ⅰ)求A1、B1的坐标;
(Ⅱ)求数列{yn}的通项公式;
(Ⅲ)令bi=
4
ai
ci=(
2
)-yi
,是否存在正整数N,当n≥N时,都有
n
i=1
bi
n
i=1
ci
,若存在,求出N的最小值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-1,0),B(1,0),动点P(x,y)满足:PA与PB的斜率之积为3.设动点P的轨迹为曲线E.
(1)求曲线E的方程;
(2)记点F(-2,0),曲线E上的任意一点C(x1,y1)满足:x1<-1,x1≠-2且y1>0,设∠CFB=α,∠CBF=β.
①求证:tanα=tan2β;
②设过点C的直线x=-
13
y+b
与轨迹E相交于另一点D(x2,y2)(x2<-1,y2<0),若∠FCB与∠FDB互补,求实数b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax-2lnx,a∈R.
(Ⅰ)当a=3时,求函数f(x)在(1,f(1))的切线方程.
(Ⅱ)求函数f(x)的极值.
(Ⅲ)对于曲线上的不同两点P1(x1,y1),P2(x2,y2),如果存在曲线上的点Q(x0,y0),且x1<x0<x2,使得曲线在点Q处的切线l∥P1P2,则称l为弦P1P2的伴随切线.当a=2时,已知两点A(1,f(1)),B(e,f(e)),试求弦AB的伴随切线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax-2lnx,a∈R
(Ⅰ)求函数f(x)的极值;
(Ⅱ)对于曲线上的不同两点P1(x1,y1),P2(x2,y2),如果存在曲线上的点Q(x0,y0),且x1<x0<x2,使得曲线在点Q处的切线l∥P1P2,则称l为弦P1P2的伴随切线.当a=2时,已知两点A(1,f(1)),B(e,f(e)),试求弦AB的伴随切线l的方程;
(Ⅲ)设g(x)=
a+2ex
   (a>0)
,若在[1,e]上至少存在一个x0,使得f(x0)>g(x0)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广西模拟)已知曲线y1=2-
1
x
y2=x3-x2+2x在x=x0处切线的斜率的乘积为3,则x0的值为(  )

查看答案和解析>>

同步练习册答案