精英家教网 > 高中数学 > 题目详情
在△ABC,角A,B,C所对应的边为a,b,c.
(1)若sin(A+
π
6
)=2cosA
,求A的值;
(2)若cosA=
1
3
,b=3c
,求sinC的值.
分析:(1)在△ABC中,由sin(A+
π
6
)=2cosA可求得tanA=
3
,从而可求得A;
(2)由cosA=
1
3
,b=3c,利用余弦定理可求得a,c之间的关系,再利用正弦定理即可求得sinC的值.
解答:(1)∵sin(A+
π
6
)=2cosA,
∴sinA=
3
cosA,
∴A=
π
3
…(5分)
(2)∵cosA=
1
3
,b=3c,
∴a2=b2+c2-2bccosA=8c2
∴a=2
2
c…(8分)
由正弦定理:
2
2
c
sinA
=
c
sinC

而sinA=
1-cos2A
=
2
2
3

∴sinC=
1
3
…(12分)
点评:本题考查余弦定理与正弦定理,求得A=
π
3
与a=2
2
c是关键,考查分析与运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=2sinx(cosx-sinx),其中x∈R
(1)求函数f(x)的最小正周期,并从下列的变换中选择一组合适变换的序号,经过这组变换的排序,可以把函数y=sin2x的图象变成y=f(x)的图象;(要求变换的先后顺序)
①纵坐标不变,横坐标变为原来的
1
2
倍,
②纵坐标不变,横坐标变为原来的2倍,
③横坐标不变,纵坐标变为原来的
2
倍,
④横坐标不变,纵坐标变为原来的
2
2
倍,
⑤向上平移一个单位,⑥向下平移一个单位,
⑦向左平移
π
4
个单位,⑧向右平移
π
4
个单位,
⑨向左平移
π
8
个单位,⑩向右平移
π
8
个单位,
(2)在△ABC中角A,B,C对应边分别为a,b,c,f(A)=0,b=4,S△ABC=6,求a的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中角A,B,C所对的边长分别为a,b,c,且sinAcosC+
12
sinC=sinB

(Ⅰ)求角A的大小;
 (Ⅱ)若a=2,求△ABC周长的最大值及相应的b,c值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•绵阳二模)已知向量
m
=(cosωx,sinωx),
n
=(cosωx,2
3
cosωx-sinωx)(x∈R,ω>0)函数f(x)=|
m
|+
m
n
且最小正周期为π,
(1)求函数,f(x)的最大值,并写出相应的x的取值集合;
(2)在△ABC中角A,B,C所对的边分别为a,b,c且f(B)=2,c=3,S△ABC=6
3
,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•江西模拟)已知函数f(x)=(
3
sinωx+cosωx)cosωx-
1
2
,(ω>0)的最小正周期为4π.
(1)若函数y=g(x)与y=f(x)的图象关于直线x=π对称,求y=g(x)的单调递增区间.
(2)在△ABC中角A,B,C,的对边分别是a,b,c满足(2a-c)cosB=b•cosC,求函数f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•莆田模拟)在△ABC,角A、B、C所对的边分别是a、b、c,且a2+b2=c2-ab
(1)求角C的大小;
(2)若cosA=
3
3
,求sinB的值.

查看答案和解析>>

同步练习册答案