精英家教网 > 高中数学 > 题目详情
如图所示,AB为⊙O的直径,AE平分∠BAC交⊙O于E点,过E作⊙O的切线交AC于点D,试判断△AED的形状,并说明理由.
见解析

解 △AED为直角三角形,理由如下:
连接OE,∵ED为⊙O切线,

∴OE⊥ED.
∵OA=OE,
∴∠1=∠OEA.
又∵∠1=∠2,
∴∠2=∠OEA,
∴OE∥AC,∴AC⊥DE,
∴△AED为直角三角形.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,梯形ABCD内接于⊙OADBC,过点C作⊙O的切线,交BD的延长线于点P,交AD的延长线于点E.

(1)求证:AB2DE·BC
(2)若BD=9,AB=6,BC=9,求切线PC的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CD=,点E,F分别为线段AB,AD的中点,则EF=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,在△ABC中,AD⊥BC于D,下列条件:

(1)∠B+∠DAC=90°;
(2)∠B=∠DAC;
(3)
(4)AB2=BD·BC.
其中一定能够判定△ABC是直角三角形的共有
A.3个    B.2个     C.1个    D.0个

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,PC切⊙O于A,PO的延长线交⊙O于B,BC切⊙O于B,若AC∶CP=1∶2,则PO∶OB等于
A.2∶1B.1∶1
C.1∶2D.1∶4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,经过⊙O上的点A的切线和弦BC的延长线相交于点P,若∠CAP=40°,∠ACP=100°,则∠BAC所对的弧的度数为
A.40°B.100°C.120°D.30°

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列说法中正确的个数是
①垂直于半径的直线是圆的切线;
②过圆心且垂直于切线的直线必过切点;
③过切点且垂直于切线的直线必过圆心;
④过半径的一端且垂直于这条半径的直线是圆的切线;
⑤同心圆内大圆的弦AB是小圆的切线,则切点是AB的中点.
A.2B.3 C.4D.5

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若BE和CF是△ABC的边AC和AB边上的高,则________四点共圆.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在Rt△ABC中,∠C=90°,a-b=1,tan A=,其中a、b分别是∠A和∠B的对边,则斜边上的高h=________.

查看答案和解析>>

同步练习册答案