精英家教网 > 高中数学 > 题目详情

cos80°cos35°+cosl0°cos55°=


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
A
分析:把原式中的cos80°和cos55°分别变形为cos(90°-10°)和cos(90°-35°),利用诱导公式cos(90°-α)=sinα变形后,再利用两角和与差的余弦函数公式化简,最后利用特殊角的三角函数值即可求出原式的值.
解答:cos80°cos35°+cosl0°cos55°
=cos(90°-10°)cos35°+cos10°cos(90°-35°)
=sin10°cos35°+cos10°sin35°
=sin(10°+35°)
=sin45
=
故选A
点评:此题考查了诱导公式,两角和与差的正弦函数公式,以及特殊角的三角函数值,把原式中的角度80°和55°分别变形为90°-10°和90°-35°是本题的突破点,熟练掌握公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源:高考总复习全解 数学 一轮复习·必修课程 (人教实验版) B版 人教实验版 B版 题型:044

化简:(1)cos72°·cos36°;

(2)cos20°·cos40°·cos60°·cos80°;

(3)cosα·cos

(4)sin20°·sin40°·sin60°·sin80°;

(5)cosα+cos2α+cos3α+…+cosnα.

查看答案和解析>>

同步练习册答案