精英家教网 > 高中数学 > 题目详情
8.在△ABC中,a=3,b=5,$cosC=-\frac{3}{5}$,则△ABC的面积S=6.

分析 由角C的范围和平方关系求出sinC,再利用三角形的面积公式求出△ABC的面积S.

解答 解:因为0<C<π,$cosC=-\frac{3}{5}$,
所以sinC=$\sqrt{1-co{s}^{2}C}$=$\frac{4}{5}$,
又a=3,b=5,所以△ABC的面积S=$\frac{1}{2}absinC$=$\frac{1}{2}×3×5×\frac{4}{5}$=6,
故答案为:6.

点评 本题考查了三角形的面积公式,以及平方关系,注意三角形内角的范围,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.“|x|>1”是“x2-1>0”的(  )条件.
A.充分而不必要B.必要而不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.sin$\frac{22π}{3}$等于(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=sin(2x-$\frac{π}{6}$)+2cos2x-1
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)若x∈(-$\frac{π}{4}$,$\frac{π}{3}$),求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知定义在R上的偶函数g(x)满足:当x≠0时,xg′(x)<0(其中g′(x)为函数g(x)的导函数);定义在R上的奇函数f(x)满足:f(x+2)=-f(x),在区间[0,1]上为单调递增函数,且函数y=f(x)在x=-5处的切线方程为y=-6.若关于x的不等式g[f(x)]≥g(a2-a+4)对x∈[6,10]恒成立,则a的取值范围是a≤-1或a≥2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知f(x)=(1+x)m+(1+3x)n (m、n∈N*)的展开式中x的系数为11.
(1)求x2的系数的最小值;
(2)当x2的系数取得最小值时,求f(x)展开式中x的奇次幂项的系数之和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=(x2+bx+b)$\sqrt{1-2x}$(b∈R)
①当b=-1时,求f(x)的极值.
②若f(x)在区间(0,$\frac{1}{3}$)上单调递增,求b的取值范围.
③试判断f(x)在定义域上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设等比数列{an}的前n项和为Sn,若${a_3}=\frac{3}{2}$,${S_3}=\frac{9}{2}$,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知(1+2x)n的展开式中,第4项的二项式系数是倒数第2项的二项式系数的7倍,求展开式中二项式系数最大的项和系数最大的项.

查看答案和解析>>

同步练习册答案