精英家教网 > 高中数学 > 题目详情
7.函数f(x)=sin(2x+$\frac{π}{6}$),则函数f(x)的图象(  )
A.关于点($\frac{5π}{12}$,0)对称B.关于点($\frac{π}{2}$,0)对称
C.关于直线x=$\frac{5π}{12}$对称D.关于直线x=$\frac{π}{12}$对称

分析 写出函数的对称轴和对称中心,逐个选项验证可得.

解答 解:由2x+$\frac{π}{6}$=kπ可得x=$\frac{kπ}{2}$-$\frac{π}{12}$,故函数的对称中心为($\frac{kπ}{2}$-$\frac{π}{12}$,0),k∈Z,
当k=1时,可得其中一个对称中心为($\frac{5π}{12}$,0),故A正确;
令$\frac{kπ}{2}$-$\frac{π}{12}$=$\frac{π}{2}$可得k=$\frac{7}{6}$∉Z,故B错误;
由2x+$\frac{π}{6}$=kπ+$\frac{π}{2}$可得x=$\frac{kπ}{2}$+$\frac{π}{6}$,故函数的对称轴为x=$\frac{kπ}{2}$+$\frac{π}{6}$,k∈Z,
令$\frac{kπ}{2}$+$\frac{π}{6}$=$\frac{5π}{12}$可得k=$\frac{1}{2}$∉Z,故C错误;
令$\frac{kπ}{2}$+$\frac{π}{6}$=$\frac{π}{12}$可得k=-$\frac{1}{6}$∉Z,故D错误.
故选:A

点评 本题考查正弦函数图象的对称性,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.直三棱柱ABC-A1B1C1的高为5,其中一个侧面的面积为10,另两个侧面面积之和为20.
(1)求该三棱柱的体积的最大值;
(2)当该三棱柱的体积取到最大值时,求三棱柱的表面积;
(3)当该三棱柱的体积取到最大值时,设O,O1分别为△ABC,△A1B1C1的重心,S在OO1上,点P为三棱锥S-ABC侧棱SA上的动点,若SA=4,求△PBC的周长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若奇函数f(x)与偶函数g(x)满足f(x)+g(x)=2x,则函数g(x)的最小值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知集合A={x|-2≤x≤17},B={x|2m+3≤x≤3m-1},若A∪B⊆A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知$f(x)=\left\{{\begin{array}{l}{\frac{1}{x},x>0}\\{{2^x},x≤0}\end{array}}\right.$,则f(f(-1))=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.${[(1-\sqrt{2}){\;}^2]^{\frac{1}{2}}}$=$\sqrt{2}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.mn>0是$\frac{x^2}{m}+\frac{y^2}{n}$=1表示椭圆的必要不充分条件.(填充分不必要、必要不充分、充要条件、既不充分也不必要)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,$\overrightarrow{BA}$=(cos16°,sin16°),$\overrightarrow{BC}$=(2sin29°,2cos29°),则△ABC面积为(  )
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知二次函数h(x)=ax2+bx+2,其导函数y=h′(x)的图象如图,f(x)=6lnx+h(x).
(1)求函数f(x)的解析式;
(2)若函数f(x)在区间$({1,m+\frac{1}{2}})$上是单调函数,求实数m的取值范围.

查看答案和解析>>

同步练习册答案