精英家教网 > 高中数学 > 题目详情
已知数列{an},如果数列{bn}满足b1=a1 ,bn=an+an-1 (n≥2,n∈N*),则称数列{bn}是数列{an}的“生成数列”
(1)若数列{an}的通项为an=n,写出数列{an}的“生成数列”{bn}的通项公式;
(2)若数列{cn}的通项为cn=2n+b,(其中b是常数),试问数列{cn}的“生成数列”{ln}是否是等差数列,请说明理由.
(3)已知数列{dn}的通项为dn=2n+n,设数列{dn}的“生成数列”{pn}的前n项和为Tn,问是否存在自然数m满足满足(Tm-2012)(Tm-6260)≤0,若存在请求出m的值,否则请说明理由.
分析:(1)根据“生成数列”的定义,数列{bn}满足b1=a1 ,bn=an+an-1 (n≥2,n∈N*),结合数列{an}的通项为an=n,递推可得结论;
(2)根据“生成数列”的定义,结合数列{cn}的通项为cn=2n+b,(其中b是常数),求出数列{cn}的“生成数列”{ln},利用等差数列的定义判断后可得结论;
(3)根据“生成数列”的定义,结合数列{dn}的通项为dn=2n+n,求出数列{dn}的“生成数列”{pn}的前n项和为Tn,解不等式可得m的值.
解答:解:(1)∵数列{bn}满足b1=a1 ,bn=an+an-1 (n≥2,n∈N*)
数列{an}的通项为an=n,
bn=
1                   n=1
2n-1            n≥2 ,∈N*
3分
综合得:bn=2n-14分
(2)ln=
2+B                   n=1
4n+2B-2        n≥2 ,∈N*
6分
当b=0时,ln=4n-2,由于ln+1-ln=4(常数)
所以此时数列{cn}的“生成数列”{ln}是等差数列            8分
当b≠0时,由于c1=2+b,c2=6+2b,c3=10+2b,9分
此时c1+c3≠2c2
∴此时数列{cn}的“生成数列”{ln}不是等差数列.        10分
(3)pn=
3                          n=1
3•2n-1+2n-1        n>1
11分
当n=1时,Tn=p1=312分
当n≥2时Tn=p1+p2+p3+…+pn=3+(3•2+3)+(3•22+5)+…+(3•2n-1+2n-1)
=3+(3•2+3•22+…+3•2n-1)+(3+5+…+2n-1)
=3•2n+n2-4,14分
所以Tn=
3                          n=1
3•2n+n2-4        n≥2
,15分
若(Tm-2012)(Tm-6260)≤0,则2012≤Tn≤626016分
由于{Tn}对于一切自然数是增函数,
T9=1613<2012,T10=3168>2013T11=6261>6260
所以存在唯一的自然数m=10满足若(Tm-2012)(Tm-6260)≤0成立            18分.
点评:本题考查的知识识是数列与不等式,等差关系的确定,数列的递推式,是数列知识较为综合的应用,还涉及新定义,较难理解,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足如图所示的程序框图.
(I)写出数列{an}的一个递推关系式;并求数列{an}的通项公式
(Ⅱ)设数列{an}的前n项和Sn,证明不等式Sn+1≤4Sn,对任意n∈N*皆成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足如图所示的流程图
(Ⅰ)写出数列{an}的一个递推关系式;
(Ⅱ)证明:{an+1-3an}是等比数列;并求出{an}的通项公式;
(Ⅲ)求数列{n(an+3n-1)}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足如图所示的程序框图.
(Ⅰ)写出当n=1,2,3时输出的结果;
(Ⅱ)写出数列{an}的一个递推关系式,并证明:{an+1-3an}是等比数列;
(Ⅲ)求{an}的通项公式及前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知数列{an}满足如图所示的程序框图.
(I)写出数列{an}的一个递推关系式;
(II)证明:{an+1-2an}是等比数列;
(III)证明{
an2n
}
是等差数列,并求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源:2011年福建省福州三中高三练习数学试卷(文科)(解析版) 题型:解答题

已知数列{an}满足如图所示的程序框图.
(I)写出数列{an}的一个递推关系式;
(II)证明:{an+1-2an}是等比数列;
(III)证明是等差数列,并求{an}的通项公式.

查看答案和解析>>

同步练习册答案