精英家教网 > 高中数学 > 题目详情
6.已知极坐标系的极点与直角坐标系的原点重合,极轴与x轴的正半轴重合,若直线l的极坐标方程为psin(θ-$\frac{π}{4}$)=2$\sqrt{2}$.
(1)把直线l的极坐标方程化为直角坐标系方程;
(2)已知P为椭圆C:$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{9}=1$上一点,求P到直线l的距离的最小值.

分析 (1)把直线l的极坐标方程化为直角坐标系方程即可;
(2)设P($\sqrt{3}$cosα,3sinα),利用点到直线的距离公式表示出P到直线l的距离d,利用余弦函数的值域确定出最小值即可.

解答 解:(1)直线l的极坐标方程为ρsin(θ-$\frac{π}{4}$)=2$\sqrt{2}$,
整理得:ρ(sinθcos$\frac{π}{4}$-cosθsin$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$ρsinθ-$\frac{\sqrt{2}}{2}$ρcosθ=2$\sqrt{2}$,
即ρsinθ-ρcosθ=4,
则直角坐标系中的方程为y-x=4,即x-y+4=0;
(2)设P($\sqrt{3}$cosα,3sinα),
∴点P到直线l的距离d=$\frac{|\sqrt{3}cosα-3sinα+4|}{\sqrt{2}}$=$\frac{2\sqrt{3}cos(α+\frac{π}{3})+4}{\sqrt{2}}$≥$\frac{-2\sqrt{3}+4}{\sqrt{2}}$=2$\sqrt{2}$-$\sqrt{6}$,
则P到直线l的距离的最小值为2$\sqrt{2}$-$\sqrt{6}$.

点评 此题考查了简单曲线的极坐标方程,熟练掌握简单极坐标方程与普通方程的转化是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.设集合A={1,2},B={x|x2+2(a+1)x+(a2-5)=0}.
(1)若A∩B={2},求实数a的值;
(2)是否存在实数a,使A∩B=A?若存在,请求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=lg$\frac{x-3}{x+3}$的图象(  )
A.关于x轴对称B.关于y轴对称C.关于直线y=x对称D.关于原点对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知y=f(x)是定义在R上的奇函数,且当x>0时,f(x)=2x-x2
(Ⅰ)求y=f(x)的解析式;
(Ⅱ)问是否存在这样的正数a,b使得当x∈[a,b]时,函数g(x)=f(x)的值域为[$\frac{1}{b}$,$\frac{1}{a}$],若存在,求出所有a,b的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某校高三期末统一测试,随机抽取一部分学生的数学成绩分组统计如下表:
分组频数频率
(0,30]30.03
(30,60]30.03
(60,90]370.37
(90,120]mn
(120,150]150.15
合计MN
(Ⅰ)若全校参加本次考试的学生有600人,试估计这次测试中我区成绩在90分以上的人数;
(Ⅱ)若该校教师拟从分数不超过60的学生中选取2人进行个案分析,求被选中2人分数不超过30分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=x2+mx+m+1,则f(-3)=(  )
A.-3B.3C.-6D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在等比数列{an}中,a1=1,公比q=2,则a4的值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.电视台有一个闯关游戏节目.参加游戏的每支队伍由父、母与小孩三人组成,规则如下:每队三次机会,每次只派一人上场,在规定时间内答对10题则过关,否则淘汰,再派另一个人上场,若三人有一人通过则全队通过.某家庭各自过关的概率分别为P1(父亲)、P2(母亲)、P3(小孩),P1、P2、P3互不相等且各自能否过关互不影响.
(1)该家庭闯关能否成功是否与上场顺序有关?并说明理由;
(2)若按父、母、小孩的顺序上场,求出场人数x的分布列及均值;
(3)若P3<P2<P1<1,分析以怎样的顺序上场可使所需出场人数的期望最小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.$f(x)=\left\{\begin{array}{l}1,\;\;\;\;\;x>0\\ 0,\;\;\;\;\;x=0\\-1,\;\;x<0,\;\;\end{array}\right.$g(x)=x2f(x-1),
(1)求g(x)的解析式;
(2)画出函数g(x)的图象,并写出其单调区间.

查看答案和解析>>

同步练习册答案