6£®ÔÚ¡÷ABCÖУ¬µãDÔÚBCÉÏ£¬$\overrightarrow{BD}$=¦Ë$\overrightarrow{DC}$£¬¹ýD×÷Ö±Ïß½»AB¡¢ACÓÚM¡¢Nµã£¬$\overrightarrow{AB}$=x$\overrightarrow{AM}$£¬$\overrightarrow{AC}$=y$\overrightarrow{AN}$£¨x£¬yΪ·ÇÁãʵÊý£©
£¨1£©µ±¦Ë=1ʱ£¬ÇóÖ¤£ºx+yΪ¶¨Öµ£»
£¨2£©µ±¦ËΪ¶¨ÖµÇҦˣ¾0ʱ£¬ÇóxyµÄ×î´óÖµ£®

·ÖÎö £¨1£©ÓÉÌâÒâ$\overrightarrow{AD}$=$\frac{1}{2}$£¨$\overrightarrow{AB}$+$\overrightarrow{AC}$£©=$\frac{1}{2}$x$\overrightarrow{AM}$+$\frac{1}{2}$y$\overrightarrow{AN}$£»´Ó¶ø±íʾ³ö$\overrightarrow{MD}$=$\overrightarrow{AD}$-$\overrightarrow{AM}$=$\frac{1}{2}$x$\overrightarrow{AM}$+$\frac{1}{2}$y$\overrightarrow{AN}$-$\overrightarrow{AM}$=£¨$\frac{1}{2}$x-1£©$\overrightarrow{AM}$+$\frac{1}{2}$y$\overrightarrow{AN}$£»$\overrightarrow{ND}$=$\overrightarrow{AD}$-$\overrightarrow{AN}$=$\frac{1}{2}$x$\overrightarrow{AM}$+$\frac{1}{2}$y$\overrightarrow{AN}$-$\overrightarrow{AN}$=$\frac{1}{2}$x$\overrightarrow{AM}$+£¨$\frac{1}{2}$y-1£©$\overrightarrow{AN}$£»´Ó¶øÓÉM¡¢N¡¢DÈýµã¹²Ï߿ɵÃx+y=2£»
£¨2£©Ó루1£©ÀàËÆ¿ÉµÃ$\frac{¦Ë}{1+¦Ë}$y+$\frac{1}{1+¦Ë}$x=1£»´Ó¶ø¿ÉµÃxy=y£¨1+¦Ë-¦Ëy£©£¬´Ó¶øÇó×î´óÖµ£®

½â´ð ½â£º£¨1£©Ö¤Ã÷£ºÓÉÌâÒ⣬$\overrightarrow{BD}$=$\overrightarrow{DC}$£¬
¡àDÊÇBCµÄÖе㣬
¡à$\overrightarrow{AD}$=$\frac{1}{2}$£¨$\overrightarrow{AB}$+$\overrightarrow{AC}$£©=$\frac{1}{2}$x$\overrightarrow{AM}$+$\frac{1}{2}$y$\overrightarrow{AN}$£»
¡à$\overrightarrow{MD}$=$\overrightarrow{AD}$-$\overrightarrow{AM}$=$\frac{1}{2}$x$\overrightarrow{AM}$+$\frac{1}{2}$y$\overrightarrow{AN}$-$\overrightarrow{AM}$=£¨$\frac{1}{2}$x-1£©$\overrightarrow{AM}$+$\frac{1}{2}$y$\overrightarrow{AN}$£»
$\overrightarrow{ND}$=$\overrightarrow{AD}$-$\overrightarrow{AN}$=$\frac{1}{2}$x$\overrightarrow{AM}$+$\frac{1}{2}$y$\overrightarrow{AN}$-$\overrightarrow{AN}$=$\frac{1}{2}$x$\overrightarrow{AM}$+£¨$\frac{1}{2}$y-1£©$\overrightarrow{AN}$£»
ÔòÓÉM¡¢N¡¢DÈýµã¹²Ï߿ɵã¬
´æÔÚʵÊýa£¬Ê¹$\overrightarrow{MD}$=a$\overrightarrow{ND}$£»
¼´£¨$\frac{1}{2}$x-1£©$\overrightarrow{AM}$+$\frac{1}{2}$y$\overrightarrow{AN}$=a£¨$\frac{1}{2}$x$\overrightarrow{AM}$+£¨$\frac{1}{2}$y-1£©$\overrightarrow{AN}$£©=$\frac{1}{2}$xa$\overrightarrow{AM}$+£¨$\frac{1}{2}$y-1£©a$\overrightarrow{AN}$£»
¹Ê$\left\{\begin{array}{l}{\frac{1}{2}x-1=\frac{1}{2}xa}\\{\frac{1}{2}y=£¨\frac{1}{2}y-1£©a}\end{array}\right.$£»
¹Êx+y=2£»
£¨2£©ÓÉÌâÒâ$\overrightarrow{BD}$+$\overrightarrow{DC}$=£¨1+¦Ë£©$\overrightarrow{DC}$=$\overrightarrow{BC}$=$\overrightarrow{AC}$-$\overrightarrow{AB}$=y$\overrightarrow{AN}$-x$\overrightarrow{AM}$£»
$\overrightarrow{DC}$=$\frac{1}{1+¦Ë}$£¨y$\overrightarrow{AN}$-x$\overrightarrow{AM}$£©£»
¹Ê$\overrightarrow{AD}$=$\overrightarrow{AC}$-$\overrightarrow{DC}$=y$\overrightarrow{AN}$-$\frac{1}{1+¦Ë}$£¨y$\overrightarrow{AN}$-x$\overrightarrow{AM}$£©=$\frac{¦Ë}{1+¦Ë}$y$\overrightarrow{AN}$+$\frac{1}{1+¦Ë}$x$\overrightarrow{AM}$£»
¹Ê$\overrightarrow{MD}$=$\overrightarrow{AD}$-$\overrightarrow{AM}$=$\frac{¦Ë}{1+¦Ë}$y$\overrightarrow{AN}$+$\frac{1}{1+¦Ë}$x$\overrightarrow{AM}$-$\overrightarrow{AM}$=£¨$\frac{1}{1+¦Ë}$x-1£©$\overrightarrow{AM}$+$\frac{¦Ë}{1+¦Ë}$y$\overrightarrow{AN}$£»
$\overrightarrow{ND}$=$\overrightarrow{AD}$-$\overrightarrow{AN}$=$\frac{¦Ë}{1+¦Ë}$y$\overrightarrow{AN}$+$\frac{1}{1+¦Ë}$x$\overrightarrow{AM}$-$\overrightarrow{AN}$=$\frac{1}{1+¦Ë}$x$\overrightarrow{AM}$+£¨$\frac{¦Ë}{1+¦Ë}$y-1£©$\overrightarrow{AN}$£»
ÔòÓÉM¡¢N¡¢DÈýµã¹²Ï߿ɵã¬
£¨$\frac{1}{1+¦Ë}$x-1£©£¨$\frac{¦Ë}{1+¦Ë}$y-1£©=$\frac{¦Ë}{1+¦Ë}$y$\frac{1}{1+¦Ë}$x£»
»¯¼ò¿ÉµÃ£¬$\frac{¦Ë}{1+¦Ë}$y+$\frac{1}{1+¦Ë}$x=1£»
¹Êx=1+¦Ë-¦Ëy£»
¹Êxy=y£¨1+¦Ë-¦Ëy£©£¬
¹Êµ±y=$\frac{1+¦Ë}{2¦Ë}$ʱ£¬xyÓÐ×î´óÖµ$\frac{£¨¦Ë+1£©^{2}}{4¦Ë}$£®

µãÆÀ ±¾Ì⿼²éÁËÆ½ÃæÏòÁ¿µÄÓ¦Óã¬ÀûÓÃÁËÆ½ÃæÏòÁ¿µÄ»ù±¾¶¨Àí£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

ͬ²½Á·Ï°²á´ð°¸