在空间四边形中,分别是的中点。若,且与所成的角为,则四边形的面积为( )
A. B. C. D.
A
【解析】
试题分析:连接EH,因为EH是△ABD的中位线,所以EH∥BD,且EH=BD.
同理,FG∥BD,EF∥AC,且FG=BD,EF=AC.
所以EH∥FG,且EH=FG.
所以四边形EFGH为平行四边形.
因为AC=BD=a,AC与BD所成的角为60°
所以EF=EH.所以四边形EFGH为菱形,∠EFG=60°.
∴四边形EFGH的面积是2××()2=a2
故答案为:a2选A.
考点:本题主要是考查的知识点简单几何体和公理四,公理四:和同一条直线平行的直线平行,证明菱形常用方法是先证明它是平行四边形再证明邻边相等相等,以及面积公式属于基础题.
点评:解决该试题的关键是先证明四边形EFGH为菱形,然后说明∠EFG=60°,最后根据三角形的面积公式即可求出所求.
科目:高中数学 来源:2010年郑州盛同学校高一下学期期末考试数学卷 题型:选择题
在空间四边形中,分别是的中点。若,且与所成的角为,则四边形的面积为 ( )
、; 、; 、; 、。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com