精英家教网 > 高中数学 > 题目详情
14、(选做题)如图,四边形ABCD内接于⊙O,BC是直径,MN与⊙O相切,切点为A,∠MAB=35°,则∠D=
125°
分析:由已知中,MN与⊙O相切,切点为A,我们易根据弦切角定理,得到∠D=∠NAB,由已知中∠MAB=35°,由邻补角定理,我们易求出∠NAB的大小,进而求出∠D.
解答:解:连接OA,由于A是切点,故OA⊥MN
∵∠MAB=35°,
∴∠BAO=55°,
又MN与⊙O相切,切点为A,
又由弦切角定理,我们可得
∠AOB=70°
故∠B=55°
∴则∠D=125°
故答案为:125°
点评:本题考查的知识点是弦切角定理,邻补角的性质,其中由弦切角定理,得到∠AOB=70°,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

15、选做题:如图,点A、B、C是圆O上的点,且AB=4,∠ACB=30°,则圆O的面积等于
16π

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)(几何证明选讲选做题)如图4,A,B是圆O上的两点,且OA⊥OB,OA=2,C为OA的中点,连接BC并延长交圆O于点D,则CD=
3
5
5
3
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(几何证明选讲选做题)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,直线MN切⊙O于D,∠MDA=60°,则∠BCD=
150°
150°

查看答案和解析>>

科目:高中数学 来源: 题型:

请考生在下列两题中任选一题作答,若两题都做,则按所做的第一题评阅计分.
1(1).(几何证明选讲选做题)如图,四边形ABCD是圆O的内接四边形,
延长AB和DC相交于点P,若
PB
PA
=
1
2
PC
PD
=
1
3
,则
BC
AD
的值为
6
6
6
6

(2).(坐标系与参数方程选做题) 极坐标系中,A为曲线ρ2+2ρcosθ-3=0上
的动点,B为直线ρcosθ+ρsinθ-7=0的动点,则|AB|距离的最小值为
4
2
-2
4
2
-2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•陕西一模)(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评阅记分.)
A.(坐标系与参数方程选做题)在极坐标系中,两点A(3,
π
3
)
B(4,
3
)
间的距离是
13
13

B.(不等式选讲选做题)若不等式|x+1|+|x-2|>5的解集为
(-∞,-2)∪(3,+∞)
(-∞,-2)∪(3,+∞)

C.(几何证明选讲选做题)如图,点A,B,C是圆O上的点,且BC=6,∠BAC=120°,则圆O的面积等于
12π
12π

查看答案和解析>>

同步练习册答案