精英家教网 > 高中数学 > 题目详情
在等腰梯形ABCD中,AB∥CD,且AB>CD.设以A,B为焦点且过点D的双曲线的离心率为e1,以C,D为焦点且过点A的椭圆的离心率为e2,则e1•e2=
 
分析:设AD=t,不妨设AB=2t,令∠DAB=θ,由余弦定理可求得 BD,由题意并结合椭圆、双曲线的定义,
求出a和 c的值,求出e1 和e2 的值,即可得到 e1•e2 的值.
解答:解:设AD=t,不妨设AB=2t,令∠DAB=θ,则由余弦定理可求得
BD=
t2+ 4t2-2t•2tcosθ
=t
5-4cosθ
.在双曲线中,2a=DB-DA=t
5-4cosθ
-t,
c=t,
c
a
=
t
5-4cosθ
-t
2
=
2
5-4cosθ
-1
,∴e1=
2
5-4cosθ
-1

在椭圆中,2a=BD+BC=t
5-4cosθ
+t,2c=DC,三角形BCD中,由余弦定理可得
BD2=BC2+DC2-2BD•DC cos(π-θ),即   t2(5-4cosθ)=t2+4c2+2t•2c•cosθ,
c=t(1-cosθ),e2=
c
a
=
t(1-cosθ)
t
5-4cosθ
+t
2
=
2(1-cosθ)
5-4cosθ
+1

∴e1•e2=
2
5-4cosθ
-1
2(1-cosθ)
5-4cosθ
+1
=1,
故答案为:1.
点评:本题考查椭圆的定义,以及简单性质的应用;双曲线的标准方程,以及双曲线的简单性质的应用,求出a 和c的值,
是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在等腰梯形ABCD中,AB=2DC=2,∠DAB=60°,E为AB的中点,将△ADE与△BEC分别沿ED、EC向上折起,使A、B重合于点P,则三棱锥P-DCE的外接球的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在等腰梯形ABCD中,AB∥CD,且AB=2AD,设∠DAB=θ,θ∈(0,
π
2
),以A,B为焦点且过点D的双曲线的离心率为e1,以C,D为焦点且过点A的椭圆的离心率为e2,则(  )
A、随着角度θ的增大,e1增大,e1e2为定值
B、随着角度θ的增大,e1减小,e1e2为定值
C、随着角度θ的增大,e1增大,e1e2也增大
D、随着角度θ的增大,e1减小,e1e2也减小

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网在等腰梯形ABCD中,E、F分别是CD、AB中点,CD=2,AB=4,AD=BC=
2
.沿EF将梯形AFED折起,使得∠AFB=60°,如图.
(Ⅰ)若G为FB的中点,求证:AG⊥平面BCEF;
(Ⅱ)求二面角C-AB-F的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在等腰梯形ABCD中,M,N分别是AB,CD的中点,沿MN将MNCB折起至MNC1B1,使它与MNDA成直二面角.已知AB=2CD=4MN,给出下列四个等式:
(1)
AN
C1N
=0;(2)
B1C1
AN
=0;(3)
B1C1
AC1
=0;(4)
B1C1
AM
=0
.中成立的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在等腰梯形ABCD中,AB=6,CD=4,梯形ABCD的面积是5
7
.若分别以A、B为椭圆E的左右焦点,且C、D在椭圆E上.
(1)求椭圆E的标准方程;
(2)设椭圆E的上顶点为M,直线l交椭圆于P、Q两点,那么是否存在直线l,使B点恰为△PQM的垂心?如果存在,求出直线l的方程;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案