精英家教网 > 高中数学 > 题目详情
已知{an}是公差不为0的等差数列,它的前9项和S9=90,且a2,a4,a8成等比数列.
(1)求数列{an}的通项公式;
(2)若数列{an}和{bn}满足等式:an=
b1
3
+
b2
32
+
b3
33
+…+
bn
3n
(n为正整数),求数列{bn}的前n项和Tn
(1)设an=a1+(n-1)d   d≠0,则
9a1+
9×8
2
d=90
(a1+d)(a1+7d)=  (a1+3d)2

a1+4d=10
a1=d
,解得a1=2,d=2.
所以an=2+(n-1)×2=2n.
(2)由(1)得,
b1
3
+
b2
32
+
b3
33
+…+
bn
3n
=2n
 ①,
当n≥2时,
b1
3
+
b2
32
+
b3
33
+…+
bn-1
3n-1
=2(n-1)
 ②,
由①-②得,
bn
3n
=2
,所以bn=2•3n.n≥2.
当n=1时,b1=3a1=6也适合上式,所以bn=2•3n.n为正整数.
因为
bn+1
bn
=
2•3n+1
2•3n
=3
,所以{bn}是首项为b1=6,公比为3的等比数列,
所以Tn=b1+b2+…+bn=
6(1-3n)
1-3
=3n+1-3.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知{an}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.
(Ⅰ)求数列{an}的通项;
(Ⅱ)求数列{2an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是公差不为零的等差数列,{bn}等比数列,满足b1=a12,b2=a22,b3=a32
(I)求数列{bn}公比q的值;
(II)若a2=-1且a1<a2,求数列{an}公差的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.
(Ⅰ)求数列{an}的通项;
(Ⅱ)令bn=
1
(an+1)2-1
(n∈N*)
,数列{bn}的前n项和Tn,证明:Tn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(文)已知{an}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.
(1)求数列{an}的通项公式;
(2)求数列{
1anan+1
}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是公差不为0的等差数列,{bn}是等比数列,其中a1=b1=1,a4=7,a5=b2,且存在常数α,β使得对每一个正整数n都有an=logαbn+β,则α+β=
4
4

查看答案和解析>>

同步练习册答案