精英家教网 > 高中数学 > 题目详情

已知实数a,b,c∈R,函数f(x)=ax3+bx2+cx满足f(1)=0,设f(x)的导函数为f′(x),满足f′(0)f′(1)>0.
(1)求数学公式的取值范围;
(2)设a为常数,且a>0,已知函数f(x)的两个极值点为x1,x2,A(x1,f(x1)),B(x2,f(x2)),求证:直线AB的斜率数学公式

解:(1)∵f(1)=a+b+c=0,∴b=-(a+c),
∵f′(x)=3ax2+2bx+c,
∴f′(0)=c,f′(1)=3a+2b+c,
∴f′(0)f′(1)=c(3a+2b+c)=c(a-c)=ac-c2>0,
∴a≠0,c≠0,
>0,
所以0<1.
(2)令f′(x)=3ax2+2bx+c=0,则,x1x2=
∴k==
=
=a()+b(x2+x1)+c
=a[]+b(x2+x1)+c
=a(-)+b(-)+c
=a[(-)+(-)+]
=(-+),
令t=,由b=-(a+c)得,=-1-t,t∈(0,1),
则k=[-(1+t)2+3t]=(-t2+t-1),
∵a>0,-t2+t-1∈(-1,-],∴k∈(-,-].
分析:(1)由f(1)=0得a+b+c=0,∴b=-(a+c),求导数f′(x),把f′(0)f′(1)>0表示为关于a,c的不等式,进而化为关于的二次不等式即可求得的取值范围;
(2)令f′(x)=3ax2+2bx+c=0,则,x1x2=,把韦达定理代入k=可得关于a,b,c的表达式,令t=,k可化为关于t的二次函数式,借助(1)问t的范围即可求得k的范围;
点评:本题考查函数在某点取得极值的条件、导数运算及直线斜率,考查转化思想,解决(2)问关键是通过换元转化为关于t的二次函数,从而可利用二次函数性质解决.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知实数a,b,c满足a≤b≤c,且ab+bc+ca=0,abc=1,不等式|a+b|≥k|c|恒成立.则实数k的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数a,b,c满足c<b<a且ac<0,则下列选项中一定不成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)若关于x的不等式|x+1|-|x-2|<a的解集不是空集,求实数a的取值范围;
(2)已知实数a,b,c,满足a+b+c=1,求(a-1)2+2(b-2)2+3(c-3)2最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲已知实数a,b,c满足a2+2b2+3c2=24
①求a+2b+3c的最值;
②若满足题设条件的任意实数a,b,c,不等式a+2b+3c>|x+1|-14恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知实数a,b,c,d,e满足a+b+c+d+e=8,a2+b2+c2+d2+e2=16,试确定e的最大值.

查看答案和解析>>

同步练习册答案