【题目】△ABC的内角A,B,C所对的边分别为a,b,c,且a,b,c成等比数列,若sinB= ,cosB= ,则a+c的值为 .
科目:高中数学 来源: 题型:
【题目】已知抛物线y2=2px(p>0)的焦点为F,准线为l,过点F的直线交抛物线于A,B两点,点A在l上的射影为A1 . 若|AB|=|A1B|,则直线AB的斜率为( )
A.±3
B.±2
C.±2
D.±
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的圆柱O1O2中,等腰梯形ABCD内接于下底面圆O1 , AB∥CD,且AB为圆O1的直径,EA和FC都是圆柱O1O2的母线,M为线段EF的中点.
(1)求证:MO1∥平面BCF;
(2)已知BC=1,∠ABC=60°,且直线AF与平面ABC所成的角为30°,求平面MAB与平面EAD所成的角(锐角)的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2cos2x+2 sinxcosx+a,且当x∈[0, ]时,f(x)的最小值为2.
(1)求a的值,并求f(x)的单调递增区间;
(2)先将函数y=f(x)的图象上的点纵坐标不变,横坐标缩小到原来的 ,再将所得图象向右平移 个单位,得到函数y=g(x)的图象,求方程g(x)=4在区间[0, ]上所有根之和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某电视台推出一档游戏类综艺节目,选手面对1﹣5号五扇大门,依次按响门上的门铃,门铃会播放一段音乐,选手需正确回答这首歌的名字,回答正确,大门打开,并获得相应的家庭梦想基金,回答每一扇门后,选手可自由选择带着目前的奖金离开,还是继续挑战后面的门以获得更多的梦想基金,但是一旦回答错误,游戏结束并将之前获得的所有梦想基金清零;整个游戏过程中,选手有一次求助机会,选手可以询问亲友团成员以获得正确答案. 1﹣5号门对应的家庭梦想基金依次为3000元、6000元、8000元、12000元、24000元(以上基金金额为打开大门后的累积金额,如第三扇大门打开,选手可获基金总金额为8000元);设某选手正确回答每一扇门的歌曲名字的概率为pi(i=1,2,…,5),且pi= (i=1,2,…,5),亲友团正确回答每一扇门的歌曲名字的概率均为 ,该选手正确回答每一扇门的歌名后选择继续挑战后面的门的概率均为 ;
(1)求选手在第三扇门使用求助且最终获得12000元家庭梦想基金的概率;
(2)若选手在整个游戏过程中不使用求助,且获得的家庭梦想基金数额为X(元),求X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的首项为a1 , 公差为d,其前n项和为Sn , 若直线y=a1x+m与圆x2+(y﹣1)2=1的两个交点关于直线x+y﹣d=0对称,则数列( )的前100项的和为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题正确的是( )
A.?x0∈R,sinx0+cosx0=
B.?x≥0且x∈R,2x>x2
C.已知a,b为实数,则a>2,b>2是ab>4的充分条件
D.已知a,b为实数,则a+b=0的充要条件是 =﹣1
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com