精英家教网 > 高中数学 > 题目详情
设点A,B的坐标分别为(-5,0),(5,0).直线AM,BM相交于点M,且它们的斜率之积为-2,则点M的轨迹是(  )
分析:设出点M的坐标,表示出直线AM、BM的斜率,进而求出它们的斜率之积,利用斜率之积是-2,建立方程,去掉不满足条件的点,即可得到点M的轨迹方程.
解答:解:设M(x,y),因为A(-5,0),B(5,0)
所以kAM=
y
x+5
(x≠-5),kBM=
y
x-5
(x≠5)
由已知,
y
x+5
y
x-5
=-2
化简,得2x2+y2=50(x≠±5)
轨迹方程是椭圆.
故选B.
点评:本题重点考查轨迹方程的求解,解题的关键是正确表示出直线AM、BM的斜率,利用条件建立方程.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设点A,B的坐标分别为(-a,0),(a,0).直线AM,BM相交于点M,且他们的斜率之积为k.则下列说法正确的是
(2)(3)
(2)(3)

(1)当k=
b2
a2
时,点M的轨迹是双曲线.(其中a,b∈R+
(2)当k=-
b2
a2
时,点M的轨迹是部分椭圆.(其中a,b∈R+
(3)在(1)条件下,点p(x0,y0)(x0<0)是曲线上的点F1(-
a2+b2
,0)
,F2
a2+b2
,0),且|PF1|=
1
4
|PF2|,则(1)的轨迹所在的圆锥曲线的离心率取值范围(1,
5
3
]
(4)在(2)的条件下,过点F1(-
a2-b2
,0),F2
a2-b2
,0).满足
.
MF1
.
MF2
=0的点M总在曲线的内部,则(2)的轨迹所在的圆锥曲线的离心率的取值范围是(
2
2
,1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设点A,B的坐标分别为(-5,0),(5,0).直线AM,BM相交于点M,且它们的斜率之积为-2,则点M的轨迹是(  )
A.圆B.椭圆C.双曲线D.抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)设点A、B的坐标分别为,(5,0).直线AM,BM相交于点M,且它们的斜率之积是,求点M的轨迹方程。

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省成都七中高二(下)3月月考数学试卷(理科)(解析版) 题型:填空题

设点A,B的坐标分别为(-a,0),(a,0).直线AM,BM相交于点M,且他们的斜率之积为k.则下列说法正确的是   
(1)当k=时,点M的轨迹是双曲线.(其中a,b∈R+
(2)当k=-时,点M的轨迹是部分椭圆.(其中a,b∈R+
(3)在(1)条件下,点p(x,y)(x<0)是曲线上的点F1(-,F2,0),且|PF1|=|PF2|,则(1)的轨迹所在的圆锥曲线的离心率取值范围(1,]
(4)在(2)的条件下,过点F1(-,0),F2,0).满足=0的点M总在曲线的内部,则(2)的轨迹所在的圆锥曲线的离心率的取值范围是

查看答案和解析>>

同步练习册答案