精英家教网 > 高中数学 > 题目详情

若n∈N*数学公式(an、bn∈Z).
(1)求a5+b5的值;
(2)求证:数列{bn}各项均为奇数.

解:(1)当n=5时,
=[]+[]
=41+
故a5=29,b5=41所以a5+b5=70
(2)证明:由数学归纳法
(i)当n=1时,易知b1=1,为奇数;
(ii)假设当n=k时,,其中bk为奇数;
则当n=k+1时,
=
∴bk+1=bk+2ak,又ak、bk∈Z,所以2ak是偶数,
由归纳假设知bk是奇数,故bk+1也是奇数
综(i)(ii)可知数列{bn}各项均为奇数.
分析:(1)令n=5,利用二项式定理展开,然后化简整理可求出a5与b5的值,从而求出所求;
(2)利用数学归纳法证明,先奠基,然后假设假设当n=k时,然后证明当n=k+1时也成立即可.
点评:本题主要考查了二项式定理的应用,以及利用数学归纳法证明有关问题,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

8、对数列{an},规定{△an}为数列{an}的一阶差分数列,其中△an=an+1-an(n∈N).对自然数k,规定{△kan}为{an}的k阶差分数列,其中△kan=△k-1an+1-△k-1an=△(△k-1an).
(1)已知数列{an}的通项公式an=n2+n(n∈N),,试判断{△an},{△2an}是否为等差或等比数列,为什么?
(2)若数列{an}首项a1=1,且满足△2an-△an+1+an=-2n(n∈N),求数列{an}的通项公式.
(3)(理)对(2)中数列{an},是否存在等差数列{bn},使得b1Cn1+b2Cn2+…+bnCnn=an对一切自然n∈N都成立?若存在,求数列{bn}的通项公式;若不存在,则请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

有一系列函数,如果它们解析式相同,值域相同,但定义域不同,则称这一系列函数为“同族函数”.那么函数的解析式为y=x2,值域为{1,2}的同族函数有
9
9
个;若n∈N*,集合An={1,2,…,n}是解析式为y=x2的函数的值域,设an表示该函数的同族函数的个数,则a1+a2+…+an=
3(3n-1)
2
3(3n-1)
2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

有一系列函数,如果它们解析式相同,值域相同,但定义域不同,则称这一系列函数为“同族函数”.那么函数的解析式为y=x2,值域为{1,2}的同族函数有________个;若n∈N*,集合An={1,2,…,n}是解析式为y=x2的函数的值域,设an表示该函数的同族函数的个数,则a1+a2+…+an=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

有一系列函数,如果它们解析式相同,值域相同,但定义域不同,则称这一系列函数为“同族函数”.那么函数的解析式为y=x2,值域为{1,2}的同族函数有______个;若n∈N*,集合An={1,2,…,n}是解析式为y=x2的函数的值域,设an表示该函数的同族函数的个数,则a1+a2+…+an=______.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年北京大学附中高三(上)入学摸底数学试卷(理科)(解析版) 题型:填空题

有一系列函数,如果它们解析式相同,值域相同,但定义域不同,则称这一系列函数为“同族函数”.那么函数的解析式为y=x2,值域为{1,2}的同族函数有    个;若n∈N*,集合An={1,2,…,n}是解析式为y=x2的函数的值域,设an表示该函数的同族函数的个数,则a1+a2+…+an=   

查看答案和解析>>

同步练习册答案