精英家教网 > 高中数学 > 题目详情
14.已知椭圆$\frac{x^2}{25}+\frac{y^2}{9}$=1的弦AB的中点为M(3,2).坐标原点为O.
(1)求直线AB的方程;   
(2)求△AOB的面积.

分析 (1)设出A,B的坐标,代入椭圆方程,利用点差法求出直线的斜率,由直线方程的点斜式得答案;
(2)联立(1)中求出的直线方程与椭圆方程,利用弦长公式求得|AB|,再由点到直线的距离公式求出原点到AB的距离,代入三角形面积公式得答案.

解答 解:(1)设A(x1,y1),B(x2,y2),
则$\frac{{{x}_{1}}^{2}}{25}+\frac{{{y}_{1}}^{2}}{9}=1$,$\frac{{{x}_{2}}^{2}}{25}+\frac{{{y}_{2}}^{2}}{9}=1$.
两式作差得:$\frac{{{x}_{1}}^{2}-{{x}_{2}}^{2}}{25}=-\frac{{{y}_{1}}^{2}-{{y}_{2}}^{2}}{9}$,
即$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}=-\frac{9}{25}•\frac{{x}_{1}+{x}_{2}}{{y}_{1}+{y}_{2}}$,
∵弦AB的中点为M(3,2),∴${k}_{AB}=\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}=-\frac{9}{25}×\frac{6}{4}=-\frac{27}{50}$.
∴直线AB的方程为y-2=$-\frac{27}{50}(x-3)$,即27x+50y-181=0;
(2)联立$\left\{\begin{array}{l}{27x+50y-181=0}\\{\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}=1}\end{array}\right.$,得1629x2-9774x+10261=0.
${x}_{1}+{x}_{2}=\frac{9774}{1629},{x}_{1}{x}_{2}=\frac{10261}{1629}$.
∴|AB|=$\sqrt{1+(-\frac{27}{50})^{2}}\sqrt{(\frac{9774}{1629})^{2}-4×\frac{10261}{1629}}$=$\frac{\sqrt{3229}}{50}×\frac{\sqrt{28670400}}{1629}$.
原点O到直线AB的距离d=$\frac{|-181|}{\sqrt{2{7}^{2}+5{0}^{2}}}=\frac{181}{\sqrt{3229}}$.
∴${S}_{△OAB}=\frac{1}{2}×\frac{\sqrt{3229}}{50}×\frac{\sqrt{28670400}}{1629}×\frac{181}{\sqrt{3229}}$=$\frac{1086\sqrt{1991}}{8145}$.

点评 本题考查直线和圆锥曲线的位置关系,训练了利用“点差法”求直线方程,考查计算能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知直线l在y轴上的截距为10,且原点到直线l的距离是8,则直线l的方程为3x+4y-40=0,3x-4y+40=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知幂函数f(x)=x${\;}^{-{m}^{2}+2m+3}$(m∈z)为偶函数,且在区间(0,+∞)上是单调增函数
(1)求函数f(x)的解析式;
(2)设函数g(x)=$\frac{1}{4}$f(x)+ax3+x2-b(x∈R),其中a,b∈R.若函数g(x)仅在x=0处有极值,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.椭圆25x2+16y2=1的焦点坐标是(  )
A.(±3,0)B.(±$\frac{1}{3}$,0)C.(±$\frac{3}{20}$,0)D.(0,±$\frac{3}{20}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知圆C在x轴上的截距为-1和3,在y轴上的一个截距为1.则圆C的标准方程为(x-1)2+(y+1)2=5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.“T≠70,J≠90”是“T+J≠160”的既不充分也不必要条件.(填充分不必要、必要不充分,充要、既不充分又不必要之一)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,在四形边ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.将△ADB沿BD折起,使CD⊥平面ABD,构成三棱锥A-BCD.则在三棱锥A-BCD中,下列结论正确的是(  )
A.AD⊥平面BCDB.AB⊥平面BCDC.平面BCD⊥平面ABCD.平面ADC⊥平面ABC

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x2+$\frac{2}{bx+1}$+a是偶函数.
(1)若在定义域上f(x)≥ax恒成立,求实数a的取值范围;
(2)已知函数g(x)=f(x)+2mx+2m-a-1,若方程g(x)=0在(-1,2)上有且只有一正实数根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.程序框图如图所示,则该程序运行后输出的值是(  )
A.0B.$\sqrt{3}$C.$-\sqrt{3}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步练习册答案