精英家教网 > 高中数学 > 题目详情
13.下列正确的是(  )
A.若a,b∈R,则$\frac{b}{a}+\frac{a}{b}≥2$B.若x<0,则x+$\frac{4}{x}$≥-2$\sqrt{x•\frac{4}{x}}$=-4
C.若ab≠0,则$\frac{b^2}{a}+\frac{a^2}{b}≥a+b$D.若x<0,则2x+2-x>2

分析 利用基本不等式的使用法则“一正二定三相等”即可判断出正误.

解答 解:A.ab<0时不成立.
B.x<0,则x+$\frac{4}{x}$=-$(-x+\frac{4}{-x})$≤-2$\sqrt{x•\frac{4}{x}}$=-4,因此不成立.
C.取a=-1,b=-2时,不成立.
D.x<0,则2x+2-x>2,成立.
故选:D.

点评 本题考查了基本不等式的使用法则“一正二定三相等”,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.直线x-2y+2m=0与坐标轴围成的三角形的面积不小于1,则实数m的取值范围为(-∞,-1]∪[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}是公差不为0的等差数列,Sn为数列{an}的前n项和,S5=20,a1,a3,a7成等比数列.
(1)求数列{an}的通项公式;
(2)若bn+1=bn+an,且b1=1,求数列{$\frac{1}{{b}_{n}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设不等式-2<|x-1|-|x+2|<0的解集为M,a,b∈M.
(Ⅰ)证明:|$\frac{1}{3}$a+$\frac{1}{6}$b|<$\frac{1}{4}$;
(Ⅱ)比较|1-4ab|与2|a-b|的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.实数x,y满足$2{cos^2}(x+y-1)=\frac{{{{(x+1)}^2}+{{(y-1)}^2}-2xy}}{x-y+1}$,则xy的最小值为(  )
A.2B.$\frac{1}{4}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=|sinx|•cosx,则下列说法正确的是(  )
A.f(x)的图象关于直线x=$\frac{π}{2}$对称B.f(x)的周期为π
C.若|f(x1)|=|f(x2)|,则x1=x2+2kπ(k∈Z)D.f(x)在区间[$\frac{π}{4}$,$\frac{3π}{4}$]上单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求与圆(x-2)2+y2=2相切且在x轴,y轴上截距相等的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若α∈($\frac{3π}{2}$,2π),化简$\sqrt{1-sinα}$+$\sqrt{1+sinα}$=$-2cos\frac{α}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知命题p:方程$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{m}$=1表示焦点在y轴上的椭圆;命题q:?x∈R,4x2-4mx+4m-3≥0.若(¬p)∧q为真,求m的取值范围.

查看答案和解析>>

同步练习册答案