精英家教网 > 高中数学 > 题目详情
10.在正四面体ABCD(各条棱相等)中,BC所在直线与AD所在直线所成角是90°.

分析 取AC中点H,连EH、FH,根据异面直线所成角的定义可知∠EHF是BC、AD所成的角,然后利用余弦定理可求出异面直线BC、AD所成角的大小.

解答 解:取AC中点H,连EH、FH,则θ=∠EHF是BC、AD所成的角,
由余弦定理得cosθ=$\frac{{EH}^{2}+{HK}^{2}-{EF}^{2}}{2EH•HF}$=0,θ=90°.
故答案为:90°.

点评 本题主要考查了异面直线的距离,以及异面直线所成角,同时考查了转化与划归的思想,计算能力和推理能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.设集合M={x|x>1,x∈R},N={y|y=2x2,x∈R},P={(x,y)|y=x-1,x∈R,y∈R},则(∁RM)∩N={x|0≤x≤1},M∩P=∅.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A={x|x=6k,k∈Z},B={x|x=3k+1,k∈Z},C={x|x=9k+1,k∈Z},a∈A,b∈B,则(  )
A.a+b∈AB.a+b∈BC.a+b∈CD.a+b∈(A∩B∩C)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,又tanA=$\frac{1}{2}$,sinB=$\frac{\sqrt{10}}{10}$.
(1)求tanC的值;
(2)若△ABC最短边的长为$\frac{\sqrt{5}}{5}$,求△ABC面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=$\left\{\begin{array}{l}{x+a(x≥3a)}\\{3x-5a(a<x<3a)}\\{-x-a(x≤a)}\end{array}\right.$,a>0(x∈R).
(1)当a=2时,求不等式f(x)≥2x-6的解集;
(2)若a=2时,f(x)>m恒成立,求m的取值范围;
(3)若不等式f(x)≤0的解集是[-3,5],求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\sqrt{3}$sinωx+cosωx(ω>0)的最小正周期为π.
(1)若f($\frac{α}{2}$)=$\frac{2}{3}$($\frac{π}{3}$<α<$\frac{π}{2}$),求sinα的值;
(2)△ABC中,角A,B,C所对的边分别为a,b,c,若f($\frac{A}{2}$-$\frac{π}{12}$)=$\frac{2\sqrt{3}}{3}$,a=2,B-A=$\frac{π}{2}$,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设各项均为正数的数列{an}满足a1=2,an+2=an(an+1)${\;}^{-\frac{3}{2}}$(n∈N*),若a2=$\frac{1}{4}$,则猜想a2014的值为${2}^{{2}^{2013}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}满足a1=2,n≥2时,an=22nan-1+n•2${\;}^{{n}^{2}}$,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知α,β,γ是锐角,sinα+sinβ=sinγ,cosα+cosβ=cosγ,求α-γ的值.

查看答案和解析>>

同步练习册答案