精英家教网 > 高中数学 > 题目详情
已知双曲线的焦点在y轴上,两顶点间的距离为4,渐近线方程为y=±2x.
(Ⅰ)求双曲线的标准方程;
(Ⅱ)设(Ⅰ)中双曲线的焦点F1,F2关于直线y=x的对称点分别为F1′,F2′,求以F1′,F2′为焦点,且过点P(0,2)的椭圆方程.
分析:(Ⅰ)根据双曲线的焦点在y轴上,设所求双曲线的方程为
y2
a2
-
x2
b2
=1
.由题意,列出关于a,b的方程,解得a=2,b=1.从而写出双曲线的方程即可;
(Ⅱ)由(Ⅰ)可求得F1(0,-
5
),F2(0,
5
).根据点F1,F2关于直线y=x的对称点分别为F1′(-
5
,0),F2′(
5
,0),设椭圆方程为
x2
m2
+
y2
n2
=1
(m>n>0).由椭圆定义,得出m,n的值,从而写出椭圆的方程即可.
解答:解:(Ⅰ)因为双曲线的焦点在y轴上,设所求双曲线的方程为
y2
a2
-
x2
b2
=1

由题意,得
2a=4
a
b
=2
解得a=2,b=1.
所求双曲线的方程为
y2
4
-x2=1

(Ⅱ)由(Ⅰ)可求得F1(0,-
5
),F2(0,
5
).
点F1,F2关于直线y=x的对称点分别为F1′(-
5
,0),F2′(
5
,0),又P(0,2),设椭圆方程为
x2
m2
+
y2
n2
=1
(m>n>0).
由椭圆定义,得2m=6,∴m=3
因为m2-n2=5,所以n2=4.
所以椭圆的方程为
x2
9
+
y2
4
=1
点评:本题主要考查了直线与圆锥曲线的综合问题.直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线的焦点在y轴,实轴长为8,离心率e=
2
,过双曲线的弦AB被点P(4,2)平分;
(1)求双曲线的标准方程;
(2)求弦AB所在直线方程;
(3)求直线AB与渐近线所围成三角形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的焦点在y轴上,并且双曲线经过点A(2, )及点B(,4),则双曲线的方程为…(  )

A.=1                         B.=1

C.                          D.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的焦点在y轴上,并且双曲线过点(3,-4)、(,5),则双曲线的标准方程为(    )

A.=1                             B.=-1

C.=1                             D.=-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的焦点在y轴上,并且双曲线过点(3,-4)、(,5),则双曲线的标准方程为(    )

A.=1                             B.=-1

C.=1                             D.=-1

查看答案和解析>>

同步练习册答案