精英家教网 > 高中数学 > 题目详情
设x,y满足约束条件
3x-y-6≤0
x-y+2≥0
x≥0,y≥0
x-2y-1
y-2
的取值范围是(  )
A、[-
9
4
,-
1
2
]
B、(-∞,-
9
4
]∪[-
1
2
,+∞)
C、(-
9
4
,-
1
2
)
D、(-∞,-
9
4
)∪(-
1
2
,+∞)
分析:画出可行域,将目标函数变形,赋予几何意义,是可行域中的点与点(5,2)连线的斜率的倒数减去2;由图求出取值范围.
解答:精英家教网解:画出可行域
x-2y-1
y-2
=
x-5
y-2
-2

设k=
y-2
x-5
表示可行域中的点与点(5,2)连线的斜率,
由图知k∈(-4, 0)∪ (0,
2
3
)

x-2y-1
y-2
=
x-5
y-2
-2=
1
k
-2

x-2y-1
y-2
∈(-∞,-
9
4
]∪[-
1
2
,+∞)

故选D
点评:本题考查画出可行域、关键将目标函数通过分离参数变形,赋予其几何意义、考查数形结合的数学思想方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设x,y满足约束条件
x+y≤1
y≤x
y≥-2
,则z=3x+y的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y满足约束条件
3x-y-6≤0
x-y+2≥0
x≥0,y≥0
,若目标函数z=ax+by(a>0,b>0)的最大值为12,则
3
a
+
2
b
的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•奉贤区二模)(文)设x,y满足约束条件
x≥0
y≥0
x
3a
+
y
4a
≤1
z=
y+1
x+1
的最小值为
1
4
,则a的值
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y满足约束条件
x-y+2≥0
4x-y-4≤0
x≥0
y≥0
,若目标函数z=ax+by(a>0,b>0)的最大值为6,则w=2ab的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y满足约束条件
x+y≥0
x-y+3≥0
x≤3
,则z=2x-y的最大值为
 

查看答案和解析>>

同步练习册答案