分析 (1)由向量共线的坐标表示和同角公式即可得到所求;
(2)运用向量的数量积的坐标表示和两角和的余弦公式及同角公式,计算即可得到所求;
(3)由向量的加法运算和两角和差的余弦公式,计算即可得到所求α+β的值.
解答 解:(1)$\overrightarrow{a}$=(2cosα,2sinα),$\overrightarrow{c}$=(1,1),且$\overrightarrow{a}$∥$\overrightarrow{c}$,
可得2cosα=2sinα,即tanα=$\frac{sinα}{cosα}$=1,
由0<α<2π,可得α=$\frac{π}{4}$或$\frac{5π}{4}$;
(2)若$\overrightarrow{a}$$•\overrightarrow{b}$=1,则2cosαcosβ+2sinαsinβ=1,
即有cosαcosβ+sinαsinβ=$\frac{1}{2}$,
又cos(α+β)=$\frac{1}{3}$,即cosαcosβ-sinαsinβ=$\frac{1}{3}$,
解得cosαcosβ=$\frac{5}{12}$,sinαsinβ=$\frac{1}{12}$.
tanαtanβ=$\frac{sinαsinβ}{cosαcosβ}$=$\frac{1}{5}$;
(3)设$\overrightarrow{c}$=(2,0),若$\overrightarrow{a}$$+2\overrightarrow{b}$=$\overrightarrow{c}$,
则cosα+cosβ=1,sinα+sinβ=0,
平方相加可得2+2(cosαcosβ+sinαsinβ)=1,
即有cos(α-β)=-$\frac{1}{2}$,
平方相减可得cos2α+cos2β+2(cosαcosβ-sinαsinβ)=1,
可得2cos(α+β)cos(α-β)+2cos(α+β)=1,
即有cos(α+β)=1,即α+β=2kπ,k∈Z,
由0<α<β<2π,可得0<α+β<4π,
即有k=1,可得α+β=2π.
点评 本题考查向量的数量积的坐标运算,考查三角函数的化简和求值,注意运用同角的基本关系式和二倍角公式及两角和差的余弦公式,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com