精英家教网 > 高中数学 > 题目详情
若关于x的不等式(m+1)x2-mx+m-1>0的解集为∅,则实数m的取值范围是
(-∞,-
2
3
3
]
(-∞,-
2
3
3
]
分析:关于x的不等式(m+1)x2-mx+m-1>0的解集为∅,可转化成不等式(m+1)x2-mx+m-1≤0恒成立,然后讨论二次项系数和判别式可得结论.
解答:解:∵关于x的不等式(m+1)x2-mx+m-1>0的解集为∅,
∴不等式(m+1)x2-mx+m-1≤0恒成立
①当m+1=0时,(m+1)x2-mx+m-1≤0,即x≤2,不是对任意x∈R恒成立;
②当m+1≠0时,?x∈R,使(m+1)x2-mx+m-1≤0,
即m+1<0且△=(-m)2-4(m+1)(m-1)≤0,
化简得:3m2≥4,解得m≥
2
3
3
或m≤-
2
3
3

∴m≤-
2
3
3

综上,实数m的取值范围是m≤-
2
3
3

故答案为:(-∞,-
2
3
3
].
点评:本题主要考查了二次函数恒成立问题,即根据二次函数图象开口方向和判别式的符号,列出等价条件求出对应的参数的范围,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若关于x的不等式(m-3)x2-2mx-8>0(m∈R)的解集是一个开区间D,定义开区间(a,b)的长度l=b-a.
(1)求开区间D的长度l(l用m表示),并写出其定义域
(2)若l∈[1,2],求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•九江一模)(1)(坐标系与参数方程选做题)
在直角坐标系xoy中,以原点为极点,x轴为非负半轴为极轴建立极坐标系,已知圆C与直线l的方程分别为:ρ=2sinθ,
x=x0+
2
t
y=
2
t
(t为参数).若圆C被直线l平分,则实数x0的值为
-1
-1

(2)(不等式选做题)
若关于x的不等式|xx-m|<2成立的充分不必要条件是2≤x≤3,则实数m的取值范围是
(1,4)
(1,4)

查看答案和解析>>

科目:高中数学 来源:2009-2010学年浙江省宁波市八校联考高一(下)期末数学试卷(解析版) 题型:解答题

若关于x的不等式(m-3)x2-2mx-8>0(m∈R)的解集是一个开区间D,定义开区间(a,b)的长度l=b-a.
(1)求开区间D的长度l(l用m表示),并写出其定义域
(2)若l∈[1,2],求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012年江西省九江市高考数学一模试卷(理科)(解析版) 题型:解答题

(1)(坐标系与参数方程选做题)
在直角坐标系xoy中,以原点为极点,x轴为非负半轴为极轴建立极坐标系,已知圆C与直线l的方程分别为:ρ=2sinθ,(t为参数).若圆C被直线l平分,则实数x的值为   
(2)(不等式选做题)
若关于x的不等式|xx-m|<2成立的充分不必要条件是2≤x≤3,则实数m的取值范围是   

查看答案和解析>>

同步练习册答案