精英家教网 > 高中数学 > 题目详情
中心在坐标原点、焦点在x轴上的椭圆,它的离心率为
3
2
,与直线x+y-1=0相交于M、N两点,若以MN为直径的圆经过坐标原点,求椭圆方程.
分析:设椭圆方程
x2
a2
+
y2
b2
=1(a>b>0),依题意椭圆方程可转化为
x2
4b2
+
y2
b2
=1,与直线x+y-1=0联立,设M(x1,y1)、N(x2,y2),利用OM⊥ON可得x1x2+y1y2=0,利用韦达定理可得到关于b的关系式,从而可求得b2与a2
解答:解:设椭圆方程
x2
a2
+
y2
b2
=1(a>b>0),
∵e=
3
2

∴a2=4b2,即a=2b.
∴椭圆方程为
x2
4b2
+
y2
b2
=1.把直线方程代入化简得5x2-8x+4-4b2=0.
设M(x1,y1)、N(x2,y2),
则x1+x2=
8
5
,x1x2=
1
5
(4-4b2),
∴y1y2=(1-x1)(1-x2
=1-(x1+x2)+x1x2
=
1
5
(1-4b2).
∵OM⊥ON,
∴x1x2+y1y2=0,
解得b2=
5
8
,a2=
5
2

∴椭圆方程为
2
5
x2+
8
5
y2=1.
点评:本题考查椭圆的标准方程,考查直线与圆锥曲线的位置关系,突出考查韦达定理的应用,考查待定系数法及综合分析与运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3,最小值为1.
(1)求椭圆C的标准方程;
(2)D为椭圆C的右顶点,设A是椭圆上异于D的一动点,作AD的垂线交椭圆与点B,求证:直线AB过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知椭圆的中心在坐标原点,焦点F1、F2在x轴上,长轴A1A2的长为4,左准线l与x轴的交点为M,
MA1
=2
A1F1

(I)求椭圆的标准方程;
(Ⅱ)过点M的直线l'与椭圆交于C、D两点,若
OC
OD
=0
,求直线l'的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E的中心在坐标原点,焦点在x轴上,且经过A(-2,0),B(1,
32
)
两点.
(1)求椭圆E的方程;
(2)若椭圆E的左、右焦点分别是F、H,过点H的直线l:x=my+1与椭圆E交于M、N两点,则△FMN的内切圆的面积是否存在最大值?若存在,求出这个最大值及直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区一模)已知椭圆G的中心在坐标原点,焦点在x轴上,一个顶点为A(0,-1),离心率为
6
3

(I)求椭圆G的方程;
(II)设直线y=kx+m与椭圆相交于不同的两点M,N.当|AM|=|AN|时,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•延庆县一模)已知椭圆C的中心在坐标原点,焦点在x轴上,它的一个顶点B与抛物线x2=4y的焦点重合,离心率e=
2
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存在直线l与椭圆交于M、N两点,且椭圆C的右焦点F恰为△BMN的垂心(三条高所在直线的交点),若存在,求出直线l的方程,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案