精英家教网 > 高中数学 > 题目详情
(理)若已知曲线C1方程为,圆C2方程为(x-3)2+y2=1,斜率为k(k>0)直线l与圆C2相切,切点为A,直线l与曲线C1相交于点B,,则直线AB的斜率为( )
A.1
B.
C.
D.
【答案】分析:先确定点B的坐标,再利用斜率为k(k>0)直线l与圆C2相切,即可求得直线AB的斜率.
解答:解:由题意,圆C2的圆心为双曲线的右焦点
,圆的半径为1
∴|BC2|=2
设B的坐标为(x,y),(x>0)
∵双曲线的右准线为x=

∴x=1
∴B(1,0)
设AB的方程为y=k(x-1),即kx-y-k=0
∵斜率为k(k>0)直线l与圆C2相切
(k>0)
解得k=
故选C.
点评:本题考查圆与圆锥曲线的综合,解题的关键是确定B的坐标,利用直线与圆相切建立方程.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•杨浦区二模)(理)在平面直角坐标系xoy中,若在曲线C1的方程F(x,y)=0中,以(λx,λy)(λ为正实数)代替(x,y)得到曲线C2的方程F(λx,λy)=0,则称曲线C1、C2关于原点“伸缩”,变换(x,y)→(λx,λy)称为“伸缩变换”,λ称为伸缩比.
(1)已知曲线C1的方程为
x2
9
-
y2
4
=1
,伸缩比λ=2,求C1关于原点“伸缩变换”后所得曲线C2的方程;
(2)射线l的方程y=
2
2
x(x≥0)
,如果椭圆C1
x2
16
+
y2
4
=1
经“伸缩变换”后得到椭圆C2,若射线l与椭圆C1、C2分别交于两点A、B,且|AB|=
2
,求椭圆C2的方程;
(3)对抛物线C1:y2=2p1x,作变换(x,y)→(λ1x,λ1y),得抛物线C2:y2=2p2x;对C2作变换(x,y)→(λ2x,λ2y)得抛物线C3:y2=2p3x,如此进行下去,对抛物线Cn:y2=2pnx作变换(x,y)→(λnx,λny),得抛物线Cn+1:y2=2pn+1x,….若p1=1 , λn=(
1
2
)n
,求数列{pn}的通项公式pn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•崇明县二模)(理)若已知曲线C1方程为x2-
y2
8
=1(x≥0,y≥0)
,圆C2方程为(x-3)2+y2=1,斜率为k(k>0)直线l与圆C2相切,切点为A,直线l与曲线C1相交于点B,|AB|=
3
,则直线AB的斜率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

(理)若已知曲线C1方程为数学公式,圆C2方程为(x-3)2+y2=1,斜率为k(k>0)直线l与圆C2相切,切点为A,直线l与曲线C1相交于点B,数学公式,则直线AB的斜率为


  1. A.
    1
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式

查看答案和解析>>

科目:高中数学 来源:2011-2012学年上海市华东师大一附中高三(下)开学数学试卷(解析版) 题型:选择题

(理)若已知曲线C1方程为,圆C2方程为(x-3)2+y2=1,斜率为k(k>0)直线l与圆C2相切,切点为A,直线l与曲线C1相交于点B,,则直线AB的斜率为( )
A.1
B.
C.
D.

查看答案和解析>>

同步练习册答案