精英家教网 > 高中数学 > 题目详情

与立几交汇.例2:如图,在长方体ABCD-A1B1C1D1中,AB=AD=2AA1=4,点O是底面ABCD的中心,点E是A1D1的中点,点P是底面ABCD上的动点,且到直线OE的距离等于1,对于点P的轨迹,下列说法正确的是


  1. A.
    离心率为数学公式的椭圆
  2. B.
    离心率为数学公式的椭圆
  3. C.
    一段抛物线
  4. D.
    半径等于1的圆
A
分析:由题意可知点P在以OE为轴,半径为1的圆柱侧面上,点P又在底面ABCD上,得点P的轨迹是平面ABCD与圆柱侧面的交线,想象知其必为椭圆,由轴OE与ABCD成45°,可算得其离心率
解答:由题意可知:知点P的轨迹为椭圆,作EF⊥AD于点F,则EF=OF=2,△OEF为等腰直角三角形,得轴OE与平面ABCD所成的角为45°,知点P的轨迹是椭圆,而半长轴长,短半轴长为b=1,则c2=a2-b2=1,∴
故选A.
点评:初看综合性较强,但从“交轨法”的角度考虑问题后,再配合题中所给的数据,也就不难解决了.是个基础题.
练习册系列答案
相关习题

科目:高中数学 来源:2010年高考数学专项复习:巧妙交汇 精彩纷呈(解析版) 题型:选择题

与立几交汇.例2:如图,在长方体ABCD-A1B1C1D1中,AB=AD=2AA1=4,点O是底面ABCD的中心,点E是A1D1的中点,点P是底面ABCD上的动点,且到直线OE的距离等于1,对于点P的轨迹,下列说法正确的是( )

A.离心率为的椭圆
B.离心率为的椭圆
C.一段抛物线
D.半径等于1的圆

查看答案和解析>>

同步练习册答案