精英家教网 > 高中数学 > 题目详情
19.设函数f(x)=$\left\{\begin{array}{l}{lnx,x>1}\\{{e}^{x},x≤1}\end{array}\right.$,则使得f(x)<1成立的x的取值范围是(-∞,0)∪(1,e).

分析 根据已知中的函数解析式,结合指数函数和对数函数的图象和性质,分类求解f(x)<1,综合讨论结果可得答案.

解答 解:当x>1时,解:f(x)=lnx<1得:x∈(1,e),
当x≤1时,解:f(x)=ex<1得:x∈(-∞,0),
综上可得使得f(x)<1成立的x的取值范围是(-∞,0)∪(1,e),
故答案为:(-∞,0)∪(1,e)

点评 本题考查的知识点是分段函数的应用,指数函数和对数函数的图象和性质,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知f(x)=cos2ωx-$\sqrt{3}$sin2ωx,f(x)的最小正周期是π.
(1)求f(x)在[-$\frac{π}{2}$,$\frac{π}{2}$]上的单调递增区间;
(2)若x∈[0,$\frac{π}{2}$]时,f(x)+m≤3,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.抛掷一颗骰子,出现点数不超过3的概率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若方程2sin2x+sinx-m-2=0在[0,2π)上有且只有两解,则实数m的取值范围是(-1,1)∪{-$\frac{17}{8}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.己知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=2,且($\overrightarrow{a}$+2$\overrightarrow{b}$)•($\overrightarrow{a}$-$\overrightarrow{b}$)=-2,则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求函数f(x)=1-4cosx-2sin2x的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|=2,则|$\overrightarrow{a}$+$\overrightarrow{b}$|=2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知x>0,y>0,x+2y+2xy=8.
(1)求xy的最大值;
(2)求x+2y的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=sin(2ωx+$\frac{π}{3}$)+$\frac{\sqrt{3}}{2}$+a,其中,ω>0,a∈R.
(I)若函数f(x)在y轴右侧的第一个最高点的横坐标为$\frac{π}{6}$,求ω的值;
(Ⅱ)在(I)的条件下,若f(x)在区间[-$\frac{π}{3}$,$\frac{5π}{6}$]上的最小值为$\frac{\sqrt{3}+1}{2}$,求实数a的值;
(Ⅲ)若函数f(x)在区间[-$\frac{π}{4}$,$\frac{π}{2}$]上单调递增,求实数ω的取值范围.

查看答案和解析>>

同步练习册答案