精英家教网 > 高中数学 > 题目详情
在△ABC中,边a,b的长是方程x2-5x+2=0的两个根,C=60°,求边c的长.
分析:由根与系数的关系得a+b=5且ab=2,从而算出a2+b2=21.根据△ABC中,C=60°,利用余弦定理算出c2的值,即可得到边c的长.
解答:解:∵a、b的长是方程x2-5x+2=0的两个根,
∴a+b=5,ab=2,
由此可得a2+b2=(a+b)2-2ab=21.
∵△ABC中,C=60°,
∴c2=a2+b2-2abcosC=21-2×2×
1
2
=19,解得c=
19

即边c的长为
19
点评:本题给出三角形的两边分别是一元二次方程的两个根,在已知角C的情况下求边c的长.着重考查了一元二次方程根与系数的关系和余弦定理解三角形等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,边a,b,c分别为角A,B,C的对边,若
m
=(sin2
B+C
2
,1)
n
=(cos2A+
7
2
,4)
m
n
.

(1)求角A的度数;
(2)若a=
3
,b+c=3
,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,边a,b,c所对的角分别为A,B,C,已知(b+c):(c+a):(a+b)=4:5:6,若b+c=8,则△ABC的面积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,边a,b,c所对应的角为A,B,C,B为锐角,sinAsinB=
BC
2AC

(Ⅰ)求角B的值;
(Ⅱ)若cosA=-
5
5
,求sin(2A+B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•济南一模)在△ABC中,边a、b、c分别是角A、B、C的对边,且满足bcosC=(3a-c)cosB.
(1)求cosB;
(2)若
BC
BA
=4,b=4
2
,求边a,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,边a,b,c的对角分别为A.B、C,且sin2A+sin2C-sinA•sinC=sin2B
(1)求角B的值;
(2)求2cos2A+cos(A-C)的范围.

查看答案和解析>>

同步练习册答案