精英家教网 > 高中数学 > 题目详情

【题目】已知:向量 =( ,0),O为坐标原点,动点M满足:| + |+| |=4.
(1)求动点M的轨迹C的方程;
(2)已知直线l1 , l2都过点B(0,1),且l1⊥l2 , l1 , l2与轨迹C分别交于点D,E,试探究是否存在这样的直线使得△BDE是等腰直角三角形.若存在,指出这样的直线共有几组(无需求出直线的方程);若不存在,请说明理由.

【答案】
(1)解:由:| + |+| |=4, =( ,0),

知动点M的轨迹是以点( ,0)为焦点、4为长轴长的椭圆,

∴c= ,a=2,

∴b=1,

∴所求的方程为 =1


(2)解:设BD:y=kx+1,代入上式得(1+4k2)x2+8kx=0,

∴x1=0,x2=﹣ =xD

∵l1⊥l2,∴以﹣ 代k,得xE=

∵△BDE是等腰直角三角形,

∴|BD|=|BE|,

=

∴|k|(k2+4)=1+4k2,①

k>0时①变为k3﹣4k2+4k﹣1=0,∴k=1或

k<0时①变为k3+4k2+4k﹣1=0,k=﹣1或

∴使得△BDE是等腰直角三角形的直线共有3组.


【解析】(1)由:| + |+| |=4, =( ,0),知动点M的轨迹是以点( ,0)为焦点、4为长轴长的椭圆,即可求动点M的轨迹C的方程;(2)设直线方程,求出D,E的坐标,利用△BDE是等腰直角三角形,可得|BD|=|BE|,即 = ,从而可得结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】[选修4-5:不等式选讲]

已知函数f(x)=|2x﹣1|+|2x+1|.
(Ⅰ)若不等式f(x)≥a2﹣2a﹣1恒成立,求实数a的取值范围;
(Ⅱ)设m>0,n>0且m+n=1,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥A﹣BCD中,平面ABC⊥平面BCD,△BAC与BCD均为等于直角三角形,且∠BAC=∠BCD=90°,BC=2,点P是线段AB上的动点,若线段CD上存在点Q,使得异面直线PQ与AC成30°的角,则线段PA长的取值范围是(
A.(0,
B.[0, ]
C.(
D.(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=ax﹣lnx,x∈(0,e],g(x)= ,其中e是自然对数的底数,a∈R.
(Ⅰ)当a=1时,求函数f(x)的单调区间和极值;
(Ⅱ)求证:在(Ⅰ)的条件下,f(x)>g(x)+
(Ⅲ)是否存在实数a,使f(x)的最小值是3,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知P是函数f(x)=ex(x>0)的图象上的动点,该图象在点P处的切线l交y轴于点M,过点P作l的垂线交y轴于点N,设线段MN的中点的纵坐标为t,则t的最大值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且对任意正整数n都有an= Sn+2成立.若bn=log2an , 则b1008=(
A.2017
B.2016
C.2015
D.2014

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,角A,B,C的对边分别为a,b,c,a=b(sinC+cosC).
(Ⅰ)求∠ABC;
(Ⅱ)若∠A= ,D为△ABC外一点,DB=2,DC=1,求四边形ABDC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=aln(x+1)﹣x2在区间(0,1)内任取两个实数p,q,且p≠q,不等式 >1恒成立,则实数a的取值范围为(
A.[15,+∞)
B.(﹣∞,15]
C.(12,30]
D.(﹣12,15]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在 ,点M是△ABC外一点,BM=2CM=2,则AM的最大值与最小值的差为

查看答案和解析>>

同步练习册答案