精英家教网 > 高中数学 > 题目详情

已知函数在区间[0,1]上单调递增,在区间[1,2]上单调递减。

(1)求的值;

(2)若斜率为24的直线是曲线的切线,求此直线方程;

(3)是否存在实数b,使得函数的图象与函数的图象恰有2个不同交点?若存在,求出实数b的值;若不存在,试说明理由.

 

【答案】

(1)由已知得,

(2),即

,此切线方程为:,即

(3)令,则

得:--------(*)

时,(*)无实根,f(x)与g(x)的图象只有1个交点;

时,(*)的实数解为x=2, f(x)与g (x)的图象有2个交点;

时,若x=0是(*)的根,则b=4,方程的另一根为x=4,此时,f(x)与g(x)的图象有2个交点;当时,f(x)与g(x)的图象有3个不同交点。

综上,存在实数b=0或4,使函数f(x)与g(x)的图象恰有2个不同交点。

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数在区间[0,1]上单调递增,在区间[1,2]上单调递减;

(1)求a的值;

(2)求证:x=1是该函数的一条对称轴;

(3)是否存在实数b,使函数的图象与函数f(x)的图象恰好有两个交点?若存在,求出b的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2007年普通高等学校招生全国统一考试理科数学卷(江西) 题型:解答题

(本小题满分12分)
已知函数在区间(0,1)内连续,且
(1)求实数k和c的值;
(2)解不等式

查看答案和解析>>

科目:高中数学 来源:2016届山东省日照市高一上学期期中考试数学试卷(解析版) 题型:解答题

已知函数在区间[0,1]上有最小值-2,求的值.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河南省安阳一中分校高一(上)第一次段考数学试卷(解析版) 题型:解答题

已知函数在区间[0,1]上的最大值是2,求实数a的值.

查看答案和解析>>

科目:高中数学 来源:2007年普通高等学校招生全国统一考试理科数学卷(江西) 题型:解答题

(本小题满分12分)

    已知函数在区间(0,1)内连续,且

   (1)求实数k和c的值;

   (2)解不等式

                       

 

查看答案和解析>>

同步练习册答案