精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=2sin(2x-$\frac{π}{6}$)+a (a∈R,a为常数)
(1)求函数f(x)的最小正周期和单调增区间;
(2)若f(x)在区间[0,$\frac{π}{2}$]最小值为3,求a的值;
(3)若函数f(x)的图象向左平移m(m>0)个单位后,得到函数g(x)的图象关于y轴对称,求实数m的最小值.

分析 (1)由条件利用正弦函数的单调性和周期性,得出结论.
(2)由条件利用正弦函数的定义域和值域,求得a的最小值.
(3)利用函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,求得实数m的最小值.

解答 解:(1)对于函数f(x)=2sin(2x-$\frac{π}{6}$)+a,它的最小正周期为T=$\frac{2π}{2}$=π,
令2kπ-$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{π}{6}$≤x≤kπ+$\frac{π}{3}$,故函数的单调增区间为[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$],k∈Z.
(2)在区间[0,$\frac{π}{2}$]上,2x-$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{5π}{6}$],sin(2x-$\frac{π}{6}$)∈[-$\frac{1}{2}$,1],
f(x)的最小值为-1+a=3,求得a=4.
(3)若函数f(x)的图象向左平移m(m>0)个单位后,得到函数g(x)=2sin[2(x+m)-$\frac{π}{6}$]+a
=2sin(2x+2m-$\frac{π}{6}$)+a的图象,根据所得图象关于y轴对称,
可得2m-$\frac{π}{6}$=kπ+$\frac{π}{2}$,即m=$\frac{kπ}{2}$+$\frac{π}{3}$,k∈Z,
故实数m的最小值为$\frac{π}{3}$.

点评 本题主要考查正弦函数的单调性和周期性,正弦函数的定义域和值域,函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.如图,点C是圆O直径BE的延长线上一点,AC是圆O的切线,A为切点,∠ACB的平分线CD分别与AB、AE交于D、F.
(1)求证:AD=AF;
(2)若AB=AC,求$\frac{S{\;}_{△ACE}}{{S}_{△BCA}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知x∈(1,+∞),函数f(x)=ex+2ax(a∈R),函数g(x)=|$\frac{e}{x}$-lnx|+lnx,其中e为自然对数的底数
(1)求函数f(x)的单调区间
(2)证明:当a∈(2,+∞)时,f′(x-1)>g(x)+a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.f(x)=x2-lnx2,若α∈(0,π),且f(sinα)>f(cosα),则α的取值范围为(  )
A.(0,$\frac{π}{4}$)∪($\frac{3π}{4}$,π)B.($\frac{π}{4}$,$\frac{π}{2}$)∪($\frac{π}{2}$,$\frac{3π}{4}$)C.(0,$\frac{π}{4}$)∪($\frac{π}{2}$,$\frac{3π}{4}$)D.($\frac{π}{4}$,$\frac{π}{2}$)∪($\frac{3π}{4}$,π)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.观察下列各式:m+n=1,m2+n2=3,m3+n3=4,m4+n4=7,m5+n5=11,…,则m9+n9=(  )
A.29B.47C.76D.123

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.方程x3-3x2-9x-5=0的实根个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xOy中,直线l的方程为x-y+2=0,以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2$\sqrt{2}$cos(θ+$\frac{π}{4}$).
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)判断直线l与曲线C的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设函数f(x)=1-ex,g(x)=lg(ax2-4x+1),若对任意x1∈[0,+∞),都存在x2∈R,使f(x1)=g(x2),则实数a的取值范围为(-∞,4].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=$\frac{cosx}{{2}^{x}}$的导函数f′(x)为(  )
A.f′(x)=$\frac{sinx-cosx}{{2}^{x}}$B.f′(x)=-$\frac{sinx+ln2•cosx}{{2}^{x}}$
C.f′(x)=$\frac{sinx-ln2•cosx}{{2}^{x}}$D.f′(x)=-$\frac{sinx+cosx}{{4}^{x}}$

查看答案和解析>>

同步练习册答案