精英家教网 > 高中数学 > 题目详情

 已知A、B、C三点的坐标分别是A(3,0),B(0,3),C,其中

(1)若,求角的值;

(2)若,求的值。

 

【答案】

(1);(2).

【解析】本试题主要是考查了向量的数量积公式的运用以及运用三角关系中的二倍角公式的综合化简和求值问题。

(1)中利用向量的坐标,结合向量的模的定义,得到三角函数关系式,从而得到角的值

(2)中根据,那么得到

而所求的表达式化简后就是得到解得。

解:(1)由

化简得   由于,所以

(2)

   

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A,B,C三点的坐标分别是A(3,0),B(0,3),C(cosα,sinα),α∈(
π
2
2
)
,若
AC
BC
=-1
,则
1+tanα
2sin2α+sin2α
的值为(  )
A、-
5
9
B、-
9
5
C、2
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B、C三点的坐标分别为A(3,0)、B(3,0)、C(cosα,sinα)且
AC
BC
=-
1
2
.求:
(Ⅰ)sinα+cosα的值;
(Ⅱ)
sin(π-4α)•cos2(π-α)
1+sin(
π
2
+4α)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B,C三点的坐标分别为A(0,1),B(2,2),C(3,5),则cosA=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B,C三点的坐标分别是A(0,
3
2
)
,B(0,3),C(cosθ,sinθ),其中
π
2
<θ<
2
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)当0≤x≤
π
2
时,求函数f(x)=2sin(2x+θ)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B、C三点的坐标分别为(1,1)、(3,2)、(2,k+1),若△ABC为等腰三角形,求k的值.

查看答案和解析>>

同步练习册答案