精英家教网 > 高中数学 > 题目详情
(2013•四川)已知函数f(x)=4x+
ax
(x>0,a>0)
在x=3时取得最小值,则a=
36
36
分析:由题设函数f(x)=4x+
a
x
(x>0,a>0)
在x=3时取得最小值,可得 f′(3)=0,解此方程即可得出a的值.
解答:解:由题设函数f(x)=4x+
a
x
(x>0,a>0)
在x=3时取得最小值,
∵x∈(0,+∞),
∴得x=3必定是函数f(x)=4x+
a
x
(x>0,a>0)
的极值点,
∴f′(3)=0,
即4-
a
32
=0,
解得a=36.
故答案为:36.
点评:本题考查利用导数求函数的最值及利用导数求函数的极值,解题的关键是理解“函数在x=3时取得最小值”,将其转化为x=3处的导数为0等量关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•四川)已知函数f(x)=
x2+2x+a,x<0
lnx,x>0
,其中a是实数,设A(x1,f(x1)),B(x2,f(x2))为该函数图象上的点,且x1<x2
(Ⅰ)指出函数f(x)的单调区间;
(Ⅱ)若函数f(x)的图象在点A,B处的切线互相垂直,且x2<0,求x2-x1的最小值;
(Ⅲ)若函数f(x)的图象在点A,B处的切线重合,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•四川)已知圆C的方程为x2+(y-4)2=4,点O是坐标原点.直线l:y=kx与圆C交于M,N两点.
(Ⅰ)求k的取值范围;
(Ⅱ)设Q(m,n)是线段MN上的点,且
2
|OQ|2
=
1
|OM|2
+
1
|ON|2
.请将n表示为m的函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•四川)已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的两个焦点分别为F1(-1,0),F2(1,0),且椭圆C经过点P(
4
3
1
3
)

(I)求椭圆C的离心率:
(II)设过点A(0,2)的直线l与椭圆C交于M,N两点,点Q是线段MN上的点,且
2
|AQ|2
=
1
|AM|2
+
1
|AN|2
,求点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•四川)已知函数f(x)=
x2+2x+a,x<0
lnx,x>0
,其中a是实数.设A(x1,f(x1)),B(x2,f(x2))为该函数图象上的两点,且x1<x2
(Ⅰ)指出函数f(x)的单调区间;
(Ⅱ)若函数f(x)的图象在点A,B处的切线互相垂直,且x2<0,证明:x2-x1≥1;
(Ⅲ)若函数f(x)的图象在点A,B处的切线重合,求a的取值范围.

查看答案和解析>>

同步练习册答案