精英家教网 > 高中数学 > 题目详情
如图,过曲线C:y=ex上一点P0(0,1)作曲线C的切线l2交x轴于点Q1(x1,0),又x轴的垂线交曲线C于点P1(x1,y1),然后再过P1(x1,y1)作曲线C的切线l1交x轴于点Q2(x2,0),又过Q2作x轴的垂线交曲线C于点P2 (x2,y2),……,以此类推,过点Pn的切线ln与x轴相交于点Qn+1(xn+1,0),再过点Qn+1作x轴的垂线交曲线C于点Pn+1(xn+1,yn+1)(n∈N*),
(1)求x1、x2及数列{xn}的通项公式;
(2)设曲线C与切线ln及直线PQ所围成的图形面积为Sn,求Sn的表达式;
(3)在满足(2)的条件下,若数列{Sn}的前n项和为Tn,求证:
(1)解:由y′=ex,设直线ln的斜率为kn,则
∴直线ln的方程为y=x+1,
令y=0,得x1=-1,
,∴
∴直线l1的方程为
令y=0,得x2=-2,
一般地,直线ln的方程为
由于点在直线ln上,∴
∴数列{xn}是首项为-1,公差为-1的等差数列,

(2)解:
(3)证明:

要证明
只要证明
即只要证明,


∴不等式对一切n∈N*都成立.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,过曲线C:y=e-x上一点P0(0,1)做曲线C的切线l0交x轴于Q1(x1,0)点,又过Q1做x轴的垂线交曲线C于P1(x1,y1)点,然后再过P1(x1,y1)做曲线C的切线l1交x轴于Q2(x2,0),又过Q2做x轴的垂线交曲线C于P2(x2,y2),…,以此类推,过点Pn的切线ln与x轴相交于点Qn+1(xn+1,0),再过点Qn+1做x轴的垂线交曲线C于点Pn+1(xn+1,yn+1)(n=1,2,3,…).
(1)求x1、x2及数列{xn}的通项公式;
(2)设曲线C与切线ln及垂线Pn+1Qn+1所围成的图形面积为Sn,求Sn的表达式;
(3)若数列{Sn}的前n项之和为Tn,求证:
Tn+1
Tn
xn+1
xn
(n∈N+).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,过曲线C:y=e-x上一点P0(0,1)做曲线C的切线l0交x轴于Q1(x1,0)点,又过Q1做x轴的垂线交曲线C于P1(x1,y1)点,然后再过P1(x1,y1)做曲线C的切线l1交x轴于Q2(x2,0),又过Q2做x轴的垂线交曲线C于P2(x2,y2),…,以此类推,过点Pn的切线ln与x轴相交于点Qn+1(xn+1,0),再过点Qn+1做x轴的垂线交曲线C于点Pn+1(xn+1,yn+1)(n=1,2,3,…).
(1)求x1、x2及数列{xn}的通项公式;
(2)设曲线C与切线ln及垂线Pn+1Qn+1所围成的图形面积为Sn,求Sn的表达式;
(3)若数列{Sn}的前n项之和为Tn,求证:数学公式(n∈N+).

查看答案和解析>>

科目:高中数学 来源:2010年陕西省西安市西工大附中高考数学一模试卷(理科)(解析版) 题型:解答题

如图,过曲线C:y=e-x上一点P(0,1)做曲线C的切线l交x轴于Q1(x1,0)点,又过Q1做x轴的垂线交曲线C于P1(x1,y1)点,然后再过P1(x1,y1)做曲线C的切线l1交x轴于Q2(x2,0),又过Q2做x轴的垂线交曲线C于P2(x2,y2),…,以此类推,过点Pn的切线ln与x轴相交于点Qn+1(xn+1,0),再过点Qn+1做x轴的垂线交曲线C于点Pn+1(xn+1,yn+1)(n=1,2,3,…).
(1)求x1、x2及数列{xn}的通项公式;
(2)设曲线C与切线ln及垂线Pn+1Qn+1所围成的图形面积为Sn,求Sn的表达式;
(3)若数列{Sn}的前n项之和为Tn,求证:(n∈N+).

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省广州市高三调研数学试卷(理科)(解析版) 题型:解答题

如图,过曲线C:y=e-x上一点P(0,1)做曲线C的切线l交x轴于Q1(x1,0)点,又过Q1做x轴的垂线交曲线C于P1(x1,y1)点,然后再过P1(x1,y1)做曲线C的切线l1交x轴于Q2(x2,0),又过Q2做x轴的垂线交曲线C于P2(x2,y2),…,以此类推,过点Pn的切线ln与x轴相交于点Qn+1(xn+1,0),再过点Qn+1做x轴的垂线交曲线C于点Pn+1(xn+1,yn+1)(n=1,2,3,…).
(1)求x1、x2及数列{xn}的通项公式;
(2)设曲线C与切线ln及垂线Pn+1Qn+1所围成的图形面积为Sn,求Sn的表达式;
(3)若数列{Sn}的前n项之和为Tn,求证:(n∈N+).

查看答案和解析>>

同步练习册答案