精英家教网 > 高中数学 > 题目详情
f(x)在R上满足f(x)=-f(x+
3
2
),f(1)=0,则f(10)=
 
考点:抽象函数及其应用,函数的值
专题:函数的性质及应用
分析:直接利用已知条件求出函数的周期,然后求解函数值即可.
解答: 解:∵f(1)=0,
f(x)在R上满足f(x)=-f(x+
3
2
),∴-f(x)=f(x+
3
2
),
∴f(x+3)=f(x+
3
2
+
3
2
)=-f(x+
3
2
)=f(x),
∴函数的周期为3,
f(10)=f(1)=0.
故答案为:0.
点评:本题考查抽象函数的应用,函数的周期的求法,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
x
ex

(1)求函数g(x)=f(x)-f′(x)的单调区间;
(2)若关于x的不等式|lnx|≤f(x)+c有解,求实数c的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

y=
120000
a
+1200a+20000(a>0)的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

当实数x,y满足
x+2y-4≤0
x-y-1≤0
x≥1
时,1≤x+ay≤5恒成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)

(Ⅰ)求f(x)的定义域;
(Ⅱ)若角α是第四象限角,且cosα=
3
5
,求f(α).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆M的方程为x2+y2-2x-3=0,求圆心M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|2x-1|.
(1)若对任意a、b、c∈R(a≠c),都有f(x)≤
|a-b|+|b-c|
|a-c|
恒成立,求x的取值范围;
(2)解不等式f(x)≤3x.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a=
π
2
0
cosxdx
,在二项式(x2-
a
x
)5
的展开式中,x的一次项系数的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在Rt△ABC中,CA=CB=3,M,N是斜边AB上的两个动点,且MN=
2
,则
CM
CN
的取值范围为(  )
A、[2,
5
2
]
B、[2,4]
C、[3,6]
D、[4,6]

查看答案和解析>>

同步练习册答案