精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=kx,
(1)求函数 的单调递增区间;
(2)若不等式f(x)≥g(x)在区间(0,+∞)上恒成立,求k的取值范围;
(3)求证:

【答案】
(1)解:∵ (x>0),∴ ,令g'(x)>0,得0<x<e,

故函数 的单调递增区间为(0,e)


(2)解:由 ,则问题转化为k大于等于h(x)的最大值.

,令

当x在区间(0,+∞)内变化时,h'(x)、h(x)变化情况如下表:

x

(0,

,+∞)

h'(x)

+

0

h(x)

由表知当 时,函数h(x)有最大值,且最大值为 ,因此k≥


(3)解:由 ,∴ (x≥2),

又∵ =

1﹣ + + +…+ =1﹣ <1,


【解析】(1)由g'(x)>0,解得x的范围,就是函数的增区间.(2)问题转化为k大于等于h(x)的最大值,利用导数求得函数h(x)有最大值,且最大值为 ,得到 k≥ .(3)先判断 (x≥2),得
用放缩法证明 <1,即得要证的不等式.
【考点精析】本题主要考查了利用导数研究函数的单调性和函数的最大(小)值与导数的相关知识点,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 ,g(x)=x2eax(a<0). (Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若对任意x1 , x2∈[0,2],f(x1)≥g(x2)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 且x>0).若存在实数p,q(p<q),使得f(x)≤0的解集恰好为[p,q],则a的取值范围是(
A.(0, ]
B.(一∞, ]
C.(0,
D.(一∞,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司设计如图所示的环状绿化景观带,该景观带的内圈由两条平行线段(图中的AB,DC)和两个半圆构成,设AB=xm,且x≥80.

(1)若内圈周长为400m,则x取何值时,矩形ABCD的面积最大?
(2)若景观带的内圈所围成区域的面积为 m2 , 则x取何值时,内圈周长最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数f(x)= ,有下列5个结论:
①任取x1 , x2∈[0,+∞),都有|f(x1)﹣f(x2)|≤2;
②函数y=f(x)在区间[4,5]上单调递增;
③f(x)=2kf(x+2k)(k∈N+),对一切x∈[0,+∞)恒成立;
④函数y=f(x)﹣ln(x﹣1)有3个零点;
⑤若关于x的方程f(x)=m(m<0)有且只有两个不同实根x1 , x2 , 则x1+x2=3.
则其中所有正确结论的序号是 . (请写出全部正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 的最小正周期为π.
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)若a,b,c分别为△ABC的三内角A,B,C的对边,角A是锐角,f(A)=0,a=1,b+c=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在R上的奇函数,且f(2)=0,当x>0时,有 恒成立,则不等式x2f(x)>0的解集为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚疼减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走了378里路,第一天健步行走,从第二天起脚疼每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了?”根据此规律,求后3天一共走多少里(
A.156里
B.84里
C.66里
D.42里

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学随机选取了40名男生,将他们的身高作为样本进行统计,得到如图所示的频率分布直方图.观察图中数据,完成下列问题.
(Ⅰ)求a的值及样本中男生身高在[185,195](单位:cm)的人数;
(Ⅱ)假设同一组中的每个数据可用该组区间的中点值代替,通过样本估计该校全体男生的平均身高;
(Ⅲ)在样本中,从身高在[145,155)和[185,195](单位:cm)内的男生中任选两人,求这两人的身高都不低于185cm的概率.

查看答案和解析>>

同步练习册答案