已知sin2β-2sinα+1=0,α,β∈R,则sin2α+sin2β的取值范围是________.
[

,2]
分析:将sin
2α+sin
2β消去β,得出sin
2α+sin
2β=sin
2α+2sinα-1=(sinα+1)
2-2,由已知,sin
2β=2sinα-1∈[0,1],得出sinα∈[

,1],利用二次函数性质求解.
解答:由已知,sin
2β=2sinα-1∈[0,1],∴sinα∈[

,1]
∴sin
2α+sin
2β=sin
2α+2sinα-1=(sinα+1)
2-2,
当时,取得最小值为

-2=

,当时取得最大值为2
sin
2α+sin
2β的取值范围是[

,2]
故答案为:[

,2]
点评:本题考查三角函数式的化简与求值,要注意减少角的种类和三角函数名称.本题关键是将sin
2α+sin
2β 化为关于sinα的二次函数,易错点在于sinα应有sinα∈[

,1],而非sinα∈[-1,1].