精英家教网 > 高中数学 > 题目详情
(2012•焦作模拟)选修4-5:不等式选讲
已知|x-2y|=5,求证:x2+y2≥5.
分析:根据柯西不等式,得5(x2+y2)≥|x-2y|2,结合已知等式|x-2y|=5,得x2+y2≥5,再利用不等式取等号的条件加以检验即可.
解答:解:由柯西不等式,得(x2+y2)[12+(-2)2]≥(x-2y)2
即5(x2+y2)≥(x-2y)2=|x-2y|2
∵|x-2y|=5,
∴5(x2+y2)≥25,化简得x2+y2≥5.
当且仅当2x=-y时,即x=-1,y=2时,x2+y2的最小值为5
∴不等式x2+y2≥5成立.
点评:本题给出条件等式,叫我们证明不等式恒成立,考查了运用柯西不等式证明不等式恒成立和不等式的等价变形等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•焦作模拟)已知向量
a
=(an,2),
b
=(an+1
2
5
)且a1=1,若数列{an}的前n项和为Sn,且
a
b
,则Sn=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•焦作模拟)已知i是虚数单位,则复数z=i+2i2+3i3所对应的点落在(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•焦作模拟)已知数列{an}的通项公式为an=|n-13|,则满足ak+ak+1+…+ak+19=102的整数k(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•焦作模拟)已知函数f(x)=mx2+lnx-2x.
(1)若m=-4,求函数f(x)的最大值.
(2)若f(x)在定义域内为增函数,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•焦作模拟)下列函数中,既是奇函数,又是增函数是(  )

查看答案和解析>>

同步练习册答案