精英家教网 > 高中数学 > 题目详情
(2013•泰安二模)过点P(1,-2)的直线l将圆x2+y2-4x+6y-3=0截成两段弧,若其中劣弧的长度最短,那么直线l的方程为
x-y-3=0
x-y-3=0
分析:过P的直线l将圆分成两条弧中,劣弧最短时,直线l与过P的直径垂直,即斜率的乘积为-1,将圆方程化为标准方程,找出圆心Q坐标,由P与Q的坐标求出直径PQ的斜率,进而求出直线l的斜率,由P坐标与求出的斜率,即可得出此时直线l的方程.
解答:解:将圆方程化为标准方程得:(x-2)2+(y+3)2=16,
∴圆心Q坐标为(2,-3),又P坐标为(1,-2),
∴直线QP的斜率为
-2-(-3)
1-2
=-1,
则所求直线l的方程为y+2=x-1,即x-y-3=0.
故答案为:x-y-3=0
点评:此题考查了直线与圆的位置关系,涉及的知识有:圆的标准方程,直线斜率的求法,以及直线的点斜式方程,解题的关键是明白过P的直线l将圆分成两条弧中,劣弧最短时,直线l与过P的直径垂直.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•泰安二模)若曲线f(x)=acosx与曲线g(x)=x2+bx+1在交点(0,m)处有公切线,则a+b=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泰安二模)已知等差数列{an}的首项a1=3,且公差d≠0,其前n项和为Sn,且a1,a4,a13分别是等比数列{bn}的b2,b3,b4
(Ⅰ)求数列{an}与{bn}的通项公式;
(Ⅱ)证明
1
3
1
S1
+
1
S2
+…+
1
Sn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泰安二模)在△ABC中,角A,B,C的对边分别是a,b,c,若sinB=2sinC,a2-b2=
3
2
bc
,则A=
2
3
π
2
3
π

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泰安二模)下列选项中,说法正确的是(  )

查看答案和解析>>

同步练习册答案
闁稿骏鎷� 闂傚偊鎷�