精英家教网 > 高中数学 > 题目详情
设有两个命题:p:关于x的不等式x2+|2x-4|-a≥0对一切x∈R恒成立;q:已知a≠0,a≠±1,函数y=-|a|x在R上是减函数,若p∧q为假命题,p∨q为真命题.求实数a的取值范围.
分析:根据绝对值内的式子符号进行分类讨论,求出命题p为真时a的范围,再由指数函数的单调性求出q为真时的对应a的范围,再由p∧q为假,p∨q为真,则p,q一真一假求出a的取值范围.
解答:解:∵不等式x2+|2x-4|-a≥0时x∈R恒成立
∴x2+|2x-4|≥a时x∈R恒成立,
y=x2+|2x-4|=
x2+2x-4(x≥2)
x2-2x+4(x<2)

∴ymin=3,∴a≤3
∴命题p为真:a≤3
函数y=-|a|x(a≠0,a≠±1)在R上是减函数
∴|a|>1,∴a>1或a<-1
∵p∧q为假,p∨q为真,∴p,q一真一假
a≤3
-1<a<1
a>3
a>1或a<-1

∴-1<a<1或a>3
点评:本题考查了复合命题的真假性,涉及了绝对值不等式的求法,恒成立问题,指数函数的单调性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设有两个命题,p:关于x的不等式ax>1(a>0,a≠1)的解集是{x|x<0};q:函数y=lg(x2-x+a)的定义域为R,如果p∨q为真命题,为p∧q假命题,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源:2013届度黑龙江龙东地区高二第一学期期末文科数学试卷 题型:解答题

设有两个命题,p:关于x的不等式(a>0,且a≠1)的解集是{x|x<0};q:函数的定义域为R。如果为真命题,为假命题,求实数a的取值范围。

 

查看答案和解析>>

科目:高中数学 来源:2013届度黑龙江龙东地区第一学期高二期末理科数学试卷 题型:填空题

设有两个命题,p:关于x的不等式(a>0,且a≠1)的解集是{x|x<0};q:函数的定义域为R。如果为真命题,为假命题,则实数a的取值范围___________。 

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设有两个命题:p:关于x的不等式x2+|2x-4|-a≥0对一切x∈R恒成立;q:已知a≠0,a≠±1,函数y=-|a|x在R上是减函数,若p∧q为假命题,p∨q为真命题.求实数a的取值范围.

查看答案和解析>>

同步练习册答案