精英家教网 > 高中数学 > 题目详情
3.在矩形ABCD中,AB=2,AD=1,点P为矩形ABCD内一点,则使得$\overrightarrow{AP}$•$\overrightarrow{AC}$≥1的概率为$\frac{7}{8}$.

分析 将矩形放在坐标系中,设P(x,y)利用向量的数量积公式,作出对应的区域,求出对应的面积即可得到结论.

解答 解:将矩形放在坐标系中,设P(x,y),
则A(0,0),C(2,1),
则$\overrightarrow{AP}$•$\overrightarrow{AC}$≥1等价为2x+y≥1,
作出不等式对应的区域,为五边形DCBE,
当y=0时,x=$\frac{1}{2}$,即E($\frac{1}{2}$,0),
则△ADE的面积S=$\frac{1}{2}$×$\frac{1}{2}$×$1=\frac{1}{4}$,
则五边形DCBE的面积S=2-$\frac{1}{4}$=$\frac{7}{4}$,
则$\overrightarrow{AP}$•$\overrightarrow{AC}$≥1的概率P=$\frac{7}{8}$,
故答案为$\frac{7}{8}$.

点评 本题主要考查几何概型的概率的计算,根据向量数量积的坐标关系,求出对应区域面积,是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.下列四个判断:?
①某校高三(1)班的人数和高三(2)班的人数分别是m和n,某次数学测试平均分分别是a,b,则这两个班的数学平均分为$\frac{a+b}{2}$;?
②从总体中抽取的样本(1,2.5),(2,3.1),(4,3.9),(5,4.4),则回归直线y=bx+a必过点(3,3.6);
③在频率分布直方图中,众数左边和右边的所有直方图的面积相等.
其中正确的个数有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知菱形ABCD的边长为4,∠ABC=120°,若在菱形内任取一点,则该点到菱形的四个顶点的距离大于1的概率(  )
A.$\frac{π}{4}$B.1-$\frac{π}{4}$C.$\frac{{\sqrt{3}π}}{24}$D.$1-\frac{{\sqrt{3}π}}{24}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.不存在函数f(x)满足,对任意x∈R都有(  )
A.f(|x+1|)=x2+2xB.f(cos2x)=cosxC.f(sinx)=cos2xD.f(cosx)=cos2x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知a>0,b>0,c>0,且a+b+c=1.则$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$的最小值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知双曲线${C_1}:\frac{x^2}{4}-{y^2}=1$,双曲线${C_2}:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>b>0)$的左、右焦点分别为F1,F2,M是双曲线C2的一条渐近线上的点,且OM⊥MF2,O为坐标原点,若${S_{△OM{F_2}}}=16$,且双曲线C1,C2的离心率相同,则双曲线C2的实轴长是(  )
A.32B.16C.8D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.△ABC满足$\overrightarrow{AB}•\overrightarrow{AC}=2\sqrt{3},∠BAC={30°}$,设M为△ABC内一点(不在边界上),记x、y、z分别表示△MBC、△MAC、△MAB的面积,若z=$\frac{1}{2},则\frac{1}{x}+\frac{4}{y}$最小值为(  )
A.9B.8C.18D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\frac{1}{2}$x2+2xf′(2017)-2017lnx,则f′(2017)=(  )
A.2016B.-2016C.2017D.-2017

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.取一根长度为4m的绳子,拉直后在任意位置剪断,则剪得的两段长度都不小于1.5m的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

同步练习册答案