精英家教网 > 高中数学 > 题目详情
有三根针和套在一根针上的若干金属片,按下列规则,把金属片从一根针上全部移到另一根针上:(1)每次只能移动一个金属片;(2)较大金属片不能放在较小金属片上面.则
把n个金属片从1号针移到3号针,最少需要移动
2n-1
2n-1
次.
分析:根据移动方法与规律发现,随着盘子数目的增多,都是分两个阶段移动,用盘子数目减1的移动次数都移动到2柱,然后把最大的盘子移动到3柱,再用同样的次数从2柱移动到3柱,从而完成,然后根据移动次数的数据找出总的规律求解即可.
解答:解:设h(n)是把n个盘子从1柱移到3柱过程中移动盘子之最少次数
n=1时,h(1)=1;
n=2时,小盘→2柱,大盘→3柱,小柱从2柱→3柱,完成,即h(2)=3=22-1;
n=3时,小盘→3柱,中盘→2柱,小柱从3柱→2柱,[用h(2)种方法把中、小两盘移到2柱,大盘3柱;再用h(2)种方法把中、小两盘从2柱3柱,完成],
h(3)=h(2)×h(2)+1=3×2+1=7=23-1,
h(4)=h(3)×h(3)+1=7×2+1=15=24-1,

以此类推,h(n)=h(n-1)×h(n-1)+1=2n-1,
故答案为:2n-1.
点评:本题考查了归纳推理、图形变化的规律问题,根据题目信息,得出移动次数分成两段计数,利用盘子少一个时的移动次数移动到2柱,把最大的盘子移动到3柱,然后再用同样的次数从2柱移动到3柱,从而完成移动过程是解题的关键,本题对阅读并理解题目信息的能力要求比较高.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图有三根针和套在一根针上的n(n∈N*)个金属片.按下列规则,把金属片从一根针上全部移到另一根针上. 
1.每次只能移动1个金属片;                      
2.较大的金属片不能放在较小的金属片上面.
现用an表示把n个金属片从中间的针移到右边的针上所至少需要移动的次数,请回答下列问题:
(1)写出a1,a2,a3,并求出an
(2)记bn=an+1,求和Sn=
 
1≤i≤j≤n
bibj
(i,j∈N*);(其中
 
1≤i≤j≤n
bibj
表示所有的积bibj(1≤i≤j≤n)的和.例:
 
1≤i≤j≤2
bibj=
b
2
1
+b1b2+
b
2
2
=
1
2
[(b1+b22+(
b
2
1
+
b
2
2
)]
(3)证明:
1
7
S1
S2
+
S1S3
S2S4
+…+
S1S3S2n-1
S2S4S2n  
4
21
(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•汕尾二模)如图所示:有三根针和套在一根针上的若干金属片.按下列规则,把金属片从一根针上全部移到另一根针上.
(1)每次只能移动一个金属片;
(2)在每次移动过程中,每根针上较大的金属片不能放在较小的金属片上面.将n个金属片从1号针移到3号针最少需要移动的次数记为f(n);
①f(3)=
7
7

②f(n)=
2n-1
2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,有三根针和套在一根针上的n个金属片,按下列规则,把金属片从一根针上全部移到另一根针上.
(1)每次只能移动一个金属片;
(2)在每次移动过程中,每根针上较大的金属片不能放在较小的金属片上面.若将n个金属片从1号针移到3号针最少需要移动的次数记为f(n),则f(5)=(  )

查看答案和解析>>

科目:高中数学 来源:2011-2012学年海南省高考压轴卷文科数学试卷(解析版) 题型:填空题

 如图所示:有三根针和套在一根针上的n个金属片,按下列规则,把金属片从一根针上全部移到另一根针上.

(1)每次只能移动一个金属片;

(2)在每次移动过程中,每根针上较大的金属片不能放在较小的金属片上面.将n个金属片从1号针移到3号针最少需要移动的次数记为;则:(Ⅰ)      (Ⅱ)     

 

查看答案和解析>>

同步练习册答案