(本小题满分18分)设数列{
}的前
项和为
,且满足
=2-
,(
=1,2,3,…)
(Ⅰ)求数列{
}的通项公式;
(Ⅱ)若数列{
}满足
=1,且
,求数列{
}的通项公式;
(Ⅲ)
,求
的前
项和![]()
(Ⅰ) an=
(n∈N*); (Ⅱ) bn=3-2(
)n-; (Ⅲ)
。
【解析】
试题分析:(Ⅰ)∵n=1时,a1+S1=a1+a1=2
∴a1=1
∵Sn=2-an即an+Sn=2 ∴an+1+Sn+1=2
两式相减:an+1-an+Sn+1-Sn=0
即an+1-an+an+1=0,故有2an+1=an
∵an≠0 ∴
(n∈N*)
所以,数列{an}为首项a1=1,公比为
的等比数列.an=
(n∈N*)
(Ⅱ)∵bn+1=bn+an(n=1,2,3,…)
∴bn+1-bn=(
)n-1
得b2-b1=1
b3-b2=![]()
b4-b3=(
)2
……
bn-bn-1=(
)n-2(n=2,3,…)
将这n-1个等式相加,得
bn-b1=1+![]()
又∵b1=1,∴bn=3-2(
)n-1(n=1,2,3,…)
(3)![]()
所以![]()
考点:数列通项公式的求法;数列前n项和的求法。
点评:若已知递推公式为
的形式求通项公式常用累加法。
注:①若
是关于n的一次函数,累加后可转化为等差数列求和;
②若
是关于n的二次函数,累加后可分组求和;
③
是关于n的指数函数,累加后可转化为等比数列求和;
④
是关于n的分式函数,累加后可裂项求和。
科目:高中数学 来源: 题型:
(本小题满分18分)如图,将圆分成
个扇形区域,用3种不同颜色给每一个扇形区域染色,要求相邻区域颜色互异,把不同的染色方法种数记为
。求
(Ⅰ)
;
(Ⅱ)
与
的关系式;
(Ⅲ)数列
的通项公式
,并证明
。
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分18分)已知数列{an}、{bn}、{cn}的通项公式满足bn=an+1-an,cn=bn+1-bn(n∈N*?),若数列{bn}是一个非零常数列,则称数列{an}是一阶等差数列;若数列{cn}是一个非零常数列,则称数列{an}是二阶等差数列?(1)试写出满足条件a1=1,b1=1,cn=1(n∈N*?)的二阶等差数列{an}的前五项;(2)求满足条件(1)的二阶等差数列{an}的通项公式an;(3)若数列{an}首项a1=2,且满足cn-bn+1+3an=-2n+1(n∈N*?),求数列{an}的通项公式
查看答案和解析>>
科目:高中数学 来源:2011-2012学年上海市长宁区高三教学质量测试理科数学 题型:解答题
(本小题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
(文)已知数列
中,![]()
(1)求证数列
不是等比数列,并求该数列的通项公式;
(2)求数列
的前
项和
;
(3)设数列
的前
项和为
,若
对任意
恒成立,求
的最小值.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年上海市长宁区高三教学质量测试理科数学 题型:解答题
本小题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
设函数
是定义域为R的奇函数.
(1)求k值;
(2)(文)当
时,试判断函数单调性并求不等式f(x2+2x)+f(x-4)>0的解集;
(理)若f(1)<0,试判断函数单调性并求使不等式
恒成立的
的取值范围;
(3)若f(1)=,且g(x)=a 2x+a - 2x-2m f(x) 在[1,+∞)上的最小值为-2,求m的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com