精英家教网 > 高中数学 > 题目详情

将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,将得到的点数分别记为.

(Ⅰ)求直线与圆有公共点的概率;

(Ⅱ)求方程组只有正数解的概率。

 

【答案】

(Ⅰ)    (Ⅱ)P(方程组只有正数解)=      

【解析】(Ⅰ)直线与圆有公共点的概率则圆心到直线的距离 小于半径,即,列出a,b的符合条件的情况,古典概型求解;

方程组的解为正,则求出a,b的范围,列出即可。

解:(Ⅰ)先后2次抛掷一枚骰子,将得到的点数分别记为a,b,事件总数为6×6=36.

因为直线ax+by+5=0与圆x2+y2=1有公共点,所以有

,由于a,b∈{1,2,3,4,5,6}.

∵满足条件<25的情况(a,b)有(1,1)(1,2)(1,3)(1,4)(2,1)(2,2)(2,3)(2,4)(3,1)(3,2)(3,3)(4,1)(4,2)共13种情况.

   所以,直线ax+by+c=0与圆x2+y2=1有公共点的概率是---6分

(Ⅱ)由方程组

时,符合条件的数组共有3个

时,符合条件的数组

共有10个

故P(方程组只有正数解)=

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,记第一次出现的点数为a,第二次出现的点数为b.设复数z=a+bi.
(1)求事件“z-3i为实数”的概率;
(2)求事件“|z-2|≤3”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,记第一次出现的点数为a,第二次出现的点数为b.设复数z=a+bi.
(1)求事件“z-3i为实数”的概率;
(2)求事件“复数z在复平面内的对应点(a,b)满足(a-2)2+b2≤9”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,记第一次出现的点数为a,第二次出现的点数为b.设复数z=a+bi.
(Ⅰ)求事件“z-4i为实数”的概率;
(Ⅱ)求事件“|z-1|≤3”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,记第一次出现的点数为x,第二次出现的点数为y.则事件“x+y≤3”的概率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设有关于x的一元二次方程x2+2ax+b2=0.
(1)将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,记第一次出现的点数为a,第二次出现的点数为b.求上述方程有实根的概率;
(2)若a是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实根的概率.

查看答案和解析>>

同步练习册答案