精英家教网 > 高中数学 > 题目详情
函数f(x)=cos2x-cosx+3(-π≤x≤-
π
2
)
有(  )
A、最大值3,最小值2
B、最大值5,最小值3
C、最大值5,最小值2
D、最大值3,最小值
15
8
分析:利用二倍角公式可先把函数化简得,f(x)=2cos2x-cosx+2,(-1≤cosx≤0),根据二次函数的最值求解即可
解答:解:f(x)=cos2x-cosx+3=2cos2x-cosx+2
=2(cosx-
1
4
)
2
+
15
8

-π≤ x ≤-
π
2
∴-1≤cosx≤0
当cosx=-1时函数有最大值5,当cosx=0时,函数有最小值2
故选C
点评:本题主要考查了利用二倍角公式把三角函数转化为二次函数在闭区间上最值的求解问题,解题的关键是要熟练掌握并灵活运用公式,熟练二次函数的最值求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=cos(2x-
π3
)+sin2x-cos2x

(Ⅰ)求函数f(x)的最小正周期及图象的对称轴方程;
(Ⅱ)设函数g(x)=[f(x)]2+f(x),求g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=cos(2x+
π
2
)
是(  )
A、最小正周期为π的偶函数
B、最小正周期为
π
2
的偶函数
C、最小正周期为π的奇函数
D、最小正周期为
π
2
的奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中:
①函数f(x)=
1
lgx
在(0,+∞)
是减函数;
②在平面上,到定点(2,-1)的距离与到定直线3x-4y-10=0距离相等的点的轨迹是抛物线;
③设函数f(x)=cos(
3
x+
π
6
)
,则f(x)+f'(x)是奇函数;
④双曲线
x2
25
-
y2
16
=1
的一个焦点到渐近线的距离是5;
其中正确命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•石景山区一模)已知函数f(x)=cos(π-x)sin(
π
2
+x)+
3
sinxcosx

(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求当x∈[0,
π
2
]
时,f(x)的最大值及最小值;
(Ⅲ)求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos(2x+
π
3
)+sin2x

(1)化简f(x);
(2)若不等式f(x)-m<2在x∈[
π
4
π
2
]
上恒成立,求实数m的取值范围;
(3)设A,B,C为△ABC的三个内角,若cosB=
1
3
f(
C
2
)=-
1
4
,求sinA.

查看答案和解析>>

同步练习册答案