精英家教网 > 高中数学 > 题目详情
3.我国政府对PM2.5采用如下标准:某市环保局从一年365天的市区PM2.5监测数据中,随机抽取10天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶).
PM2.5日均值m(微克/立方米)空气质量等级
  m<35一级
35≤m≤75二级
m>75超标
(1)求这10天数据的中位数;
(2)从这10天数据中任取4天的数据,记ξ为空气质量达到一级的天数,求ξ的分布列和期望;
(3)以这10天的数据来估计这一年365天的空气质量情况,并假定每天之间的空气质量相互不影响.记η为这一年中空气质量达到一级的天数,求η的平均值.

分析 (1)10天的中位数为(38+44)÷2;
(2)由于ξ~H(10,4,4),所以$P(ξ=k)=\frac{{C_4^k•C_6^{4-k}}}{{C_{10}^4}}\;(k=0,1,2,3,4)$,即可求ξ的分布列和期望;
(3)一年中每天空气质量达到一级的概率为$\frac{2}{5}$,由$η~B(365,\frac{2}{5})$,得到$Eη=365×\frac{2}{5}=146$(天).

解答 解:(1)10天的中位数为(38+44)÷2=41(微克/立方米)…(2分)
(2)由于ξ~H(10,4,4),所以$P(ξ=k)=\frac{{C_4^k•C_6^{4-k}}}{{C_{10}^4}}\;(k=0,1,2,3,4)$,
即得分布列如下:

ξ01234
P$\frac{15}{210}$$\frac{80}{210}$$\frac{90}{210}$$\frac{24}{210}$$\frac{1}{210}$
…(7分)
所以$Eξ=\frac{4×4}{10}=1.6$…(9分)
(3)一年中每天空气质量达到一级的概率为$\frac{2}{5}$,由$η~B(365,\frac{2}{5})$,得到$Eη=365×\frac{2}{5}=146$(天),
所以一年中空气质量达到一级的天数平均为146天…(12分)

点评 本题考查中位数的求法,考查离散型随机变量的分布列和数学期望的求法和应用,解题时要注意茎叶图的合理运用,充分利用样本估计总体解决.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知平行六面体ABCD-A′B′C′D′,则下列四式中:
①$\overrightarrow{AB}$-$\overrightarrow{CB}$=$\overrightarrow{AC}$;
②$\overrightarrow{AC}$=$\overrightarrow{AB}$+$\overrightarrow{B′C}$+$\overrightarrow{CC′}$;
③$\overrightarrow{AA′}$=$\overrightarrow{CC′}$;
④$\overrightarrow{AB}$+$\overrightarrow{BB′}$+$\overrightarrow{BC}$+$\overrightarrow{C′C}$=$\overrightarrow{AC}$.
正确的序号是①②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.从椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上一点M向x轴作垂线,垂足恰为左焦点F1,点A、B是椭圆与x轴正半轴、y轴正半轴的交点,且AB∥OM,|F1A|=$\sqrt{10}+\sqrt{5}$.
(Ⅰ)求该椭圆的离心率;
(Ⅱ) 若P是该椭圆上的动点,右焦点为F2,求$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆$\frac{x^2}{4}+\frac{y^2}{3}=1$的左顶点为A,右焦点为F,过点F的直线交椭圆于B,C两点.
(Ⅰ)求该椭圆的离心率;
(Ⅱ)设直线AB和AC分别与直线x=4交于点M,N,问:x轴上是否存在定点P使得MP⊥NP?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.一个椭圆的半焦距为2,离心率e=$\frac{2}{3}$,则它的短轴长是(  )
A.3B.$\sqrt{5}$C.2$\sqrt{5}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=|x-a|-$\frac{a}{2}$lnx,a∈R,求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,正方体中,两条异面直线BC1与B1D1所成的角是(  )
 
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.与函数y=|x|相等的函数是(  )
A.y=($\sqrt{x}$)2B.y=($\root{3}{x}$)3C.y=$\sqrt{{x}^{2}}$D.y=$\root{3}{{x}^{3}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在平面直角坐标系中xOy中,直线l的斜率为k且过点(0,$\sqrt{2}$),直线l与椭圆C:$\frac{{x}^{2}}{2}+{y}^{2}=1$相交于两点P和Q.
(Ⅰ)求斜率k的取值范围;
(Ⅱ)若点M为线段PQ的中点,椭圆C分别与x轴正半轴、y轴正半轴交于点A、B,问是否存在斜率k,使得$\overrightarrow{OM}$与$\overrightarrow{AB}$共线?如果存在,求出k的值;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案