精英家教网 > 高中数学 > 题目详情
如图,在直棱柱ABCD-A1B1C1D1中,AD∥BC,∠BAD=90°,AC⊥BD,BC=1,AD=AA1=3.
(I)证明:AC⊥B1D;
(II)求直线B1C1与平面ACD1所成的角的正弦值.

【答案】分析:(I)根据直棱柱性质,得BB1⊥平面ABCD,从而AC⊥BB1,结合BB1∩BD=B,证出AC⊥平面BB1D,从而得到AC⊥B1D;
(II)根据题意得AD∥B1C1,可得直线B1C1与平面ACD1所成的角即为直线AD与平面ACD1所成的角.连接A1D,利用线面垂直的性质与判定证出AD1⊥平面A1B1D,从而可得AD1⊥B1D.由AC⊥B1D,可得B1D⊥平面ACD,从而得到∠ADB1与AD与平面ACD1所成的角互余.在直角梯形ABCD中,根据Rt△ABC∽Rt△DAB,算出AB=,最后在Rt△AB1D中算出B1D=,可得cos∠ADB1=,由此即可得出直线B1C1与平面ACD1所成的角的正弦值.
解答:解:解:(I)∵BB1⊥平面ABCD,AC?平面ABCD,∴AC⊥BB1
又∵AC⊥BD,BB1、BD是平面BB1D内的相交直线
∴AC⊥平面BB1D,
∵B1D?平面BB1D,∴AC⊥B1D;
(II)∵AD∥BC,B1C1∥BC,∴AD∥B1C1
由此可得直线B1C1与平面ACD1所成的角,等于直线AD与平面ACD1所成的角(记为θ)
连接A1D,
∵直棱柱ABCD-A1B1C1D1中,∠BAD=∠B1A1D1=90°,
∴B1A1⊥平面A1D1DA,结合AD1?平面A1D1DA,得B1A1⊥AD1
又∵AD=AA1=3,∴四边形A1D1DA是正方形,可得AD1⊥A1D
∵B1A1、A1D是平面A1B1D内的相交直线,∴AD1⊥平面A1B1D,可得AD1⊥B1D,
由(I)知AC⊥B1D,结合AD1∩AC=A可得B1D⊥平面ACD,从而得到∠ADB1=90°-θ,
∵在直角梯形ABCD中,AC⊥BD,∴∠BAC=∠ADB,从而得到Rt△ABC∽Rt△DAB
因此,,可得AB==
连接AB1,可得△AB1D是直角三角形,
∴B1D2=B1B2+BD2=B1B2+AB2+BD2=21,B1D=
在Rt△AB1D中,cos∠ADB1===
即cos(90°-θ)=sinθ=,可得直线B1C1与平面ACD1所成的角的正弦值为
点评:本题给出直四棱柱,求证异面直线垂直并求直线与平面所成角的正弦之值,着重考查了直四棱柱的性质、线面垂直的判定与性质和直线与平面所成角的定义等知知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在直棱柱ABC-A1B1C1中,AC=BC=2,∠ACB=90°,AA1=2
3
,E,F分别为AB、CB中点,过直线EF作棱柱的截面,若截面与平面ABC所成的二面角的大小为60°,则截面的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直棱柱ABC-A1B1C1中,AC=BC=4
3
,∠ACB=90°,AA1=2,E、F分别是AC、AB的中点,过直线EF作棱柱的截面,若截面与平面ABC所成的二面角的大小为60°,则截面的面积为
20
3
28
3
(对一个给2分)
20
3
28
3
(对一个给2分)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•河西区一模)如图,在直棱柱ABC-A1B1C1中AB⊥BC,AB=BD=CC1=2,D为AC的中点.
(I)证明AB1∥平面BDC1
(Ⅱ)证明A1C⊥平面BDC1
(Ⅲ)求二面角A-BC1-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•临沂一模)如图,在直棱柱ABC-A1B1C1中,AC=BC=
12
AA1,∠ACB=90°,G为BB1的中点.
(Ⅰ)求证:平面A1CG⊥平面A1GC1
(Ⅱ)求平面ABC与平面A1GC所成锐二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湖南)如图.在直棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=
2
,AA1=3,D是BC的中点,点E在棱BB1上运动.
(1)证明:AD⊥C1E;
(2)当异面直线AC,C1E 所成的角为60°时,求三棱锥C1-A1B1E的体积.

查看答案和解析>>

同步练习册答案