精英家教网 > 高中数学 > 题目详情
(2012•泰州二模)已知函数f(x)=-x3+x2,g(x)=alnx,a∈R.
(1)若对任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求a的取值范围;
(2)设F(x)=
f(x),x<1
g(x),x≥1
若P是曲线y=F(x)上异于原点O的任意一点,在曲线y=F(x)上总存在另一点Q,使得△POQ中的∠POQ为钝角,且PQ的中点在y轴上,求a的取值范围.
分析:(1)已知对任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,可以转化为(x-lnx)a≤x2-2x,再利用系数分离法
(2)假设曲线y=F(x)上存在一点Q(-t,F(-t)),使∠POQ为钝角,则
OP
OQ
<0
,然后对t进行讨论:t<-1,-1<t<1,t>1,三种情况进行讨论,转化为函数的恒成立,利用常数分离法进行求解;
解答:解:(1)由对任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,得(x-lnx)a≤x2-2x,.
由于x∈[1,e],lnx≤1≤x,且等号不能同时取得,所以lnx<x,x-lnx>0.
从而a≤
x2-2x
x-lnx
恒成立,a≤(
x2-2x
x-lnx
min. …(4分)
设t(x)=
x2-2x
x-lnx
,x∈[1,e],
求导,得t′(x)=
(x-1)(x+2-lnx)
(x-lnx)2
.…(6分)
x∈[1,e],x-1≥0,lnx≤1,x+2-lnx>0,
从而t′(x)≥0,t(x)在[1,e]上为增函数.
所以t(x)min=t(1)=-1,所以a≤-1.…(8分)
(2)F(x)=
-x3+x2,x<1
alnx,   x≥1

设P(t,F(t))为曲线y=F(x)上的任意一点.
假设曲线y=F(x)上存在一点Q(-t,F(-t)),使∠POQ为钝角,
OP
OQ
<0

若t≤-1,P(t,-t3+t2),Q(-t,aln(-t)),
OP
OQ
=-t2+aln(-t)(-t3+t2),
由于
OP
OQ
<0
恒成立,a(1-t)ln(-t)<1.
当t=-1时,a(1-t)ln(-t)<1.恒成立.
当t<-1时,a<
1
(1-t)ln(-t)
恒成立.由于
1
(1-t)ln(-t)
>0
,所以a≤0.(12分)
若-1<t<1,t≠0,P(t,-t3+t2),Q(-t,t3+t2),
OP
OQ
=-t2+(-t3+t2)(t3+t2)<0,
t4-t2+1>0对-1<t<1,t≠0恒成立.…(14分)
③当t≥1时,同①可得a≤0.
综上所述,a的取值范围是(-∞,0].  …(16分)
点评:解决本题的关键在于“转化”,先将转化为恒成立问题,再将将问题转化为二次函数问题,最终得以解决.很多问题在实施“化难为易”、“化生为熟”中得以解决,但是题中所蕴涵的分类讨论思想却是我们常用的方法;
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•泰州二模)已知角φ的终边经过点P(1,-2),函数f(x)=sin(ωx+φ)(ω>0)图象的相邻两条对称轴之间的距离等于
π
3
,则f(
π
12
)
=
-
10
10
-
10
10

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泰州二模)若抛物线y2=2px(p>0)上的点A(2,m)到焦点的距离为6,则p=
8
8

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泰州二模)若动点P在直线l1:x-y-2=0上,动点Q在直线l2:x-y-6=0上,设线段PQ的中点为M(x1,y1),且(x1-2)2+(y1+2)2≤8,则x12+y12的取值范围是
[8,16]
[8,16]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泰州二模)如图,三棱柱ABC-A1B1C1中,D、E分别是棱BC、AB的中点,点F在棱CC1上,已知AB=AC,AA1=3,BC=CF=2.
(1)求证:C1E∥平面ADF;
(2)若点M在棱BB1上,当BM为何值时,平面CAM⊥平面ADF?

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泰州二模)已知z=(a-i)(1+i)(a∈R,i为虚数单位),若复数z在复平面内对应的点在实轴上,则a=
1
1

查看答案和解析>>

同步练习册答案